
Aerospace Toolbox

User’s Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Toolbox User’s Guide

© COPYRIGHT 2006–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 First printing Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 2.2 (Release 2008b)
March 2009 Online only Revised for Version 2.3 (Release 2009a)
September 2009 Online only Revised for Version 2.4 (Release 2009b)
March 2010 Online only Revised for Version 2.5 (Release 2010a)
September 2010 Online only Revised for Version 2.6 (Release 2010b)
April 2011 Online only Revised for Version 2.7 (Release 2011a)
September 2011 Online only Revised for Version 2.8 (Release 2011b)
March 2012 Online only Revised for Version 2.9 (Release 2012a)
September 2012 Online only Revised for Version 2.10 (Release 2012b)
March 2013 Online only Revised for Version 2.11 (Release 2013a)
September 2013 Online only Revised for Version 2.12 (Release 2013b)

Contents

Getting Started

1
Aerospace Toolbox Product Description 1-2
Key Features . 1-2

Aerospace Toolbox and Aerospace Blockset 1-3

Using Aerospace Toolbox

2
Defining Coordinate Systems . 2-2
Fundamental Coordinate System Concepts 2-2
Coordinate Systems for Modeling . 2-4
Coordinate Systems for Navigation 2-7
Coordinate Systems for Display . 2-10
References . 2-11

Aerospace Units . 2-12

Digital DATCOM Data . 2-14
Digital DATCOM Data Overview . 2-14
USAF Digital DATCOM File . 2-14
Data from DATCOM Files . 2-15
Imported DATCOM Data . 2-15
Missing DATCOM Data . 2-17
Aerodynamic Coefficients . 2-22

3-D Flight Data Playback . 2-26
Aerospace Toolbox Animation Objects 2-26

Aero.Animation Objects . 2-27
Running the Example . 2-27

v

Simulated and Actual Flight Data . 2-27

Aero.VirtualRealityAnimation Objects 2-37
Running the Example . 2-37
Visualize Aircraft Takeoff via Virtual Reality Animation
Object . 2-38

Aero.FlightGearAnimation Objects 2-57
About the FlightGear Interface . 2-57
Configuring Your Computer for FlightGear 2-58
Install and Start FlightGear . 2-62
Flight Simulator Interface Example 2-63
Running the Example . 2-65
Flight Trajectory Data . 2-66

Alphabetical List

3

AC3D Files and Thumbnails

A
AC3D Files and Thumbnails Overview A-2

Index

vi Contents

1

Getting Started

• “Aerospace Toolbox Product Description” on page 1-2

• “Aerospace Toolbox and Aerospace Blockset” on page 1-3

1 Getting Started

Aerospace Toolbox Product Description
Aerospace reference standards, environmental models, and
aerodynamic coefficient importing

Aerospace Toolbox provides reference standards, environmental models,
and aerodynamic coefficient importing for performing advanced aerospace
analysis to develop and evaluate your designs. Options for visualizing vehicle
dynamics include a six-degrees-of-freedom MATLAB® animation object and
interfaces to FlightGear flight simulator and Simulink® 3D Animation™
software. These options let you visualize flight data in a three-dimensional
(3-D) environment and reconstruct behavioral anomalies in flight-test results.

Key Features

• Includes standards-based environmental models for atmosphere, gravity,
geoid height, wind, and magnetic field

• Converts units and transforms coordinate systems and spatial
representations

• Implements predefined utilities for aerospace parameter calculations, time
calculations, and quaternion math

• Imports aerodynamic coefficients from the U.S. Air Force Digital Data
Compendium (Datcom)

• Provides options for visualizing vehicle dynamics in a 3-D environment,
including an interface to FlightGear flight simulator

1-2

Aerospace Toolbox and Aerospace Blockset™

Aerospace Toolbox and Aerospace Blockset
The Aerospace product family includes the Aerospace Toolbox and Aerospace
Blockset™ products. The toolbox provides static data analysis capabilities,
while the blockset provides an environment for dynamic modeling and
vehicle component modeling and simulation. The Aerospace Blockset
software uses part of the functionality of the toolbox as an engine. Use these
products together to model aerospace systems in the MATLAB and Simulink
environments.

1-3

1 Getting Started

1-4

2

Using Aerospace Toolbox

• “Defining Coordinate Systems” on page 2-2

• “Aerospace Units” on page 2-12

• “Digital DATCOM Data” on page 2-14

• “3-D Flight Data Playback” on page 2-26

• “Aero.Animation Objects” on page 2-27

• “Aero.VirtualRealityAnimation Objects” on page 2-37

• “Aero.FlightGearAnimation Objects” on page 2-57

2 Using Aerospace Toolbox

Defining Coordinate Systems

In this section...

“Fundamental Coordinate System Concepts” on page 2-2

“Coordinate Systems for Modeling” on page 2-4

“Coordinate Systems for Navigation” on page 2-7

“Coordinate Systems for Display” on page 2-10

“References” on page 2-11

Fundamental Coordinate System Concepts
Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. The Aerospace Toolbox coordinate systems
are based on these underlying concepts from geodesy, astronomy, and physics.

Definitions
The Aerospace Toolbox software uses right-handed (RH) Cartesian coordinate
systems. The right-hand rule establishes the x-y-z sequence of coordinate
axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely
speaking, acceleration is defined with respect to the distant cosmos. In an
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The toolbox models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator
is the intersection of the equatorial plane and the Earth’s surface. The
geographic poles are the intersection of the Earth’s surface and the geopolar
axis. In general, the Earth’s geopolar and rotation axes are not identical.

2-2

Defining Coordinate Systems

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The
zero longitude or prime meridian passes through Greenwich, England.

Approximations
The Aerospace Toolbox software makes three standard approximations in
defining coordinate systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that
the rotation and geopolar axes are identical. In reality, these axes are
slightly misaligned, and the equatorial plane wobbles as the Earth rotates.
This effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The toolbox
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy,
and the Galaxy’s motion through cosmos. In most applications, only the
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space,
i.e., outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Toolbox software uses the standard WGS-84 geoid to model
the Earth. You can change the equatorial axis length, the flattening, and
the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid
size, flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

2-3

2 Using Aerospace Toolbox

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is
modified by the presence of wind, and the craft’s motion through the air is
not the same as its motion relative to the ground.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

• The z-axis points down through the bottom of the craft, perpendicular to
the x-y plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles
P, Q, R or Φ, Θ, Ψ. They are

• P or Φ: Roll about the x-axis

• Q or Θ: Pitch about the y-axis

• R or Ψ: Yaw about the z-axis

2-4

Defining Coordinate Systems

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid
aircraft. The coordinate system orientation is defined relative to the craft’s
velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

• The z-axis points perpendicular to the x-y plane in whatever way needed to
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving
along these axes by distances x, y, and z from the origin.

2-5

2 Using Aerospace Toolbox

Rotational Degrees of Freedom. Rotations are defined by the Euler
angles Φ, γ, χ. They are

• Φ: Bank angle about the x-axis

• γ: Flight path about the y-axis

• χ: Heading angle about the z-axis

2-6

Defining Coordinate Systems

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude μ on the Earth’s surface is defined by the angle
subtended by the surface normal vector n and the equatorial plane.

2-7

2 Using Aerospace Toolbox

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin
fixed at the aircraft or spacecraft’s center of gravity. Its axes are oriented
along the geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

2-8

Defining Coordinate Systems

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the
Sun. (This rule ignores the Sun’s oblique angle to the equator, which varies
with season. The actual Sun always remains in the x-z plane.)

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Earth-Centered Coordinates

2-9

2 Using Aerospace Toolbox

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

• The y-axis points into the eastward quadrant, perpendicular to the x-z
plane so as to satisfy the RH rule.

Coordinate Systems for Display
The Aerospace Toolbox software lets you use FlightGear coordinates for
rendering motion.

FlightGear is an open-source, third-party flight simulator with an interface
supported by the Aerospace Toolbox product.

• “Flight Simulator Interface Example” on page 2-63 discusses the toolbox
interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z
values.

2-10

http://www.flightgear.org

Defining Coordinate Systems

References
Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox™ documentation, The MathWorks, Inc., Natick,
Massachusetts. “Mapping Toolbox”.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84),
http://earth-info.nga.mil/GandG/wgs84.

2-11

http://earth-info.nga.mil/GandG/wgs84

2 Using Aerospace Toolbox

Aerospace Units
The Aerospace Toolbox functions support standard measurement systems.
The Unit Conversion functions provide means for converting common
measurement units from one system to another, such as converting velocity
from feet per second to meters per second and vice versa.

The unit conversion functions support all units listed in this table.

Quantity MKS (SI) English

Acceleration meters/second2 (m/s2),
kilometers/second2

(km/s2),
(kilometers/hour)/second
(km/h-s), g-unit (g)

inches/second2 (in/s2),
feet/second2 (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g)

Angle radian (rad), degree
(deg), revolution

radian (rad), degree
(deg), revolution

Angular acceleration radians/second2 (rad/s2),
degrees/second2 (deg/s2)

radians/second2 (rad/s2),
degrees/second2 (deg/s2)

Angular velocity radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute
(rpm),
revolutions/second (rps)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute
(rpm), revolutions/second
(rps)

Density kilogram/meter3 (kg/m3) pound mass/foot3

(lbm/ft3), slug/foot3

(slug/ft3), pound
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile
(mi), nautical mile (nm)

Mass kilogram (kg) slug (slug), pound mass
(lbm)

2-12

Aerospace Units

Quantity MKS (SI) English

Pressure pascal (Pa) pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature kelvin (K), degrees
Celsius (oC)

degrees Fahrenheit (oF),
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s),
kilometers/second
(km/s), kilometers/hour
(km/h)

inches/second (in/sec),
feet/second (ft/sec),
feet/minute (ft/min),
miles/hour (mph), knots

2-13

2 Using Aerospace Toolbox

Digital DATCOM Data

In this section...

“Digital DATCOM Data Overview” on page 2-14

“USAF Digital DATCOM File” on page 2-14

“Data from DATCOM Files” on page 2-15

“Imported DATCOM Data” on page 2-15

“Missing DATCOM Data” on page 2-17

“Aerodynamic Coefficients” on page 2-22

Digital DATCOM Data Overview
The Aerospace Toolbox product enables bringing United States Air Force
(USAF) Digital DATCOM files into the MATLAB environment by using
the datcomimport function. For more information, see the datcomimport
function reference page. This section explains how to import data from a
USAF Digital DATCOM file.

The example used in the following topics is available as an Aerospace Toolbox
example. You can run the example by entering astimportddatcom in the
MATLAB Command Window.

USAF Digital DATCOM File
The following is a sample input file for USAF Digital DATCOM for a
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes and calculating static and dynamic
derivatives. You can also view this file by entering type astdatcom.in in the
MATLAB Command Window.

$FLTCON NMACH=2.0,MACH(1)=0.1,0.2$

$FLTCON NALT=2.0,ALT(1)=5000.0,8000.0$

$FLTCON NALPHA=5.,ALSCHD(1)=-2.0,0.0,2.0,

ALSCHD(4)=4.0,8.0,LOOP=2.0$

$OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$

$SYNTHS XCG=7.08,ZCG=0.0,XW=6.1,ZW=-1.4,ALIW=1.1,XH=20.2,

ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$

2-14

Digital DATCOM Data

$BODY NX=10.0,

X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,

R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$

$WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,

TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$

NACA-W-6-64A412

$HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,

CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$

NACA-H-4-0012

$VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,

CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$

NACA-V-4-0012

CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG

DAMP

NEXT CASE

The output file generated by USAF Digital DATCOM for the same
wing-body-horizontal tail-vertical tail configuration running over five alphas,
two Mach numbers, and two altitudes can be viewed by entering type
astdatcom.out in the MATLAB Command Window.

Data from DATCOM Files
Use the datcomimport function to bring the Digital DATCOM data into the
MATLAB environment.

alldata = datcomimport('astdatcom.out', true, 0);

Imported DATCOM Data
The datcomimport function creates a cell array of structures containing the
data from the Digital DATCOM output file.

data = alldata{1}

data =

case: 'SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG'

mach: [0.1000 0.2000]

alt: [5000 8000]

alpha: [-2 0 2 4 8]

nmach: 2

2-15

2 Using Aerospace Toolbox

nalt: 2

nalpha: 5

rnnub: []

hypers: 0

loop: 2

sref: 225.8000

cbar: 5.7500

blref: 41.1500

dim: 'ft'

deriv: 'deg'

stmach: 0.6000

tsmach: 1.4000

save: 0

stype: []

trim: 0

damp: 1

build: 1

part: 0

highsym: 0

highasy: 0

highcon: 0

tjet: 0

hypeff: 0

lb: 0

pwr: 0

grnd: 0

wsspn: 18.7000

hsspn: 5.7000

ndelta: 0

delta: []

deltal: []

deltar: []

ngh: 0

grndht: []

config: [1x1 struct]

cd: [5x2x2 double]

cl: [5x2x2 double]

cm: [5x2x2 double]

cn: [5x2x2 double]

ca: [5x2x2 double]

2-16

Digital DATCOM Data

xcp: [5x2x2 double]

cla: [5x2x2 double]

cma: [5x2x2 double]

cyb: [5x2x2 double]

cnb: [5x2x2 double]

clb: [5x2x2 double]

qqinf: [5x2x2 double]

eps: [5x2x2 double]

depsdalp: [5x2x2 double]

clq: [5x2x2 double]

cmq: [5x2x2 double]

clad: [5x2x2 double]

cmad: [5x2x2 double]

clp: [5x2x2 double]

cyp: [5x2x2 double]

cnp: [5x2x2 double]

cnr: [5x2x2 double]

clr: [5x2x2 double]

Missing DATCOM Data
By default, missing data points are set to 99999 and data points are set to
NaN where no DATCOM methods exist or where the method is not applicable.

It can be seen in the Digital DATCOM output file and examining the imported

data that CYβ , Cnβ , Clq , and Cmq have data only in the first alpha value.
Here are the imported data values.

data.cyb

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

2-17

2 Using Aerospace Toolbox

ans(:,:,2) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cnb

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.clq

ans(:,:,1) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

2-18

Digital DATCOM Data

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

0.0000 0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

data.cmq

ans(:,:,1) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

ans(:,:,2) =

1.0e+004 *

-0.0000 -0.0000

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

9.9999 9.9999

The missing data points will be filled with the values for the first alpha, since
these data points are meant to be used for all alpha values.

aerotab = {'cyb' 'cnb' 'clq' 'cmq'};

2-19

2 Using Aerospace Toolbox

for k = 1:length(aerotab)

for m = 1:data.nmach

for h = 1:data.nalt

data.(aerotab{k})(:,m,h) = data.(aerotab{k})(1,m,h);

end

end

end

Here are the updated imported data values.

data.cyb

ans(:,:,1) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

ans(:,:,2) =

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

-0.0035 -0.0035

data.cnb

ans(:,:,1) =

1.0e-003 *

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

0.9142 0.8781

2-20

Digital DATCOM Data

ans(:,:,2) =

1.0e-003 *

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

0.9190 0.8829

data.clq

ans(:,:,1) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

ans(:,:,2) =

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

0.0974 0.0984

data.cmq

ans(:,:,1) =

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

ans(:,:,2) =

2-21

2 Using Aerospace Toolbox

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

-0.0892 -0.0899

Aerodynamic Coefficients
You can now plot the aerodynamic coefficients:

• “Plotting Lift Curve Moments” on page 2-22

• “Plotting Drag Polar Moments” on page 2-23

• “Plotting Pitching Moments” on page 2-24

Plotting Lift Curve Moments

h1 = figure;

figtitle = {'Lift Curve' ''};

for k=1:2

subplot(2,1,k)

plot(data.alpha,permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k});

end

xlabel('Angle of Attack (deg)')

2-22

Digital DATCOM Data

Plotting Drag Polar Moments

h2 = figure;

figtitle = {'Drag Polar' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cd(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Drag Coefficient')

2-23

2 Using Aerospace Toolbox

Plotting Pitching Moments

h3 = figure;

figtitle = {'Pitching Moment' ''};

for k=1:2

subplot(2,1,k)

plot(permute(data.cm(:,k,:),[1 3 2]),permute(data.cl(:,k,:),[1 3 2]))

grid

ylabel(['Lift Coefficient (Mach =' num2str(data.mach(k)) ')'])

title(figtitle{k})

end

xlabel('Pitching Moment Coefficient')

2-24

Digital DATCOM Data

2-25

2 Using Aerospace Toolbox

3-D Flight Data Playback

Aerospace Toolbox Animation Objects
To visualize flight data in the Aerospace Toolbox environment, you can
use the following animation objects and their associated methods. These
animation objects use the MATLAB time series object, timeseries to
visualize flight data.

• Aero.Animation— Visualize flight data without any other tool or toolbox.
The following objects support this object.

- Aero.Body

- Aero.Camera

- Aero.Geometry

For more information, see “Aero.Animation Objects” on page 2-27.

• Aero.VirtualRealityAnimation — Visualize flight data with the
Simulink 3D Animation product. The following objects support this object.

- Aero.Node

- Aero.Viewpoint

For more information, see “Aero.VirtualRealityAnimation Objects” on page
2-37.

• Aero.FlightGearAnimation— Visualize flight data with the FlightGear
simulator. For more information, see “Aero.FlightGearAnimation Objects”
on page 2-57.

2-26

Aero.Animation Objects

Aero.Animation Objects
The toolbox interface to animation objects uses the Handle Graphics®

capability. The Overlaying Simulated and Actual Flight Data (astmlanim)
example visually compares simulated and actual flight trajectory data by
creating animation objects, creating bodies for those objects, and loading the
flight trajectory data.

• Create and configure an animation object.

• Load recorded data for flight trajectories.

• Display body geometries in a figure window.

• Play back flight trajectories using the animation object.

• Manipulate the camera.

• Move and reposition bodies.

• Create a transparency in the first body.

• Change the color of the second body.

• Turn off the landing gear of the second body.

Running the Example

1 Start the MATLAB software.

2 Enter astmlanim in the MATLAB Command Window.

While running, the example performs several steps by issuing a series of
commands.

Simulated and Actual Flight Data

Creating and Configuring an Animation Object
This series of commands creates an animation object and configures the object.

1 Create an animation object.

h = Aero.Animation;

2-27

2 Using Aerospace Toolbox

2 Configure the animation object to set the number of frames per second
(FramesPerSecond) property. This configuration controls the rate at which
frames are displayed in the figure window.

h.FramesPerSecond = 10;

3 Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling property determine
the time step of the simulation. These settings result in a time step of
approximately 0.5 s.

4 Create and load bodies for the animation object. This example uses these
bodies to work with and display the simulated and actual flight trajectories.
The first body is orange; it represents simulated data. The second body is
blue; it represents the actual flight data.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
idx2 = h.createBody('pa24-250_blue.ac','Ac3d');

Both bodies are AC3D format files. AC3D is one of several file formats that
the animation objects support. FlightGear uses the same file format. The
animation object reads in the bodies in the AC3D format and stores them
as patches in the geometry object within the animation object.

Loading Recorded Data for Flight Trajectories
This series of commands loads the recorded flight trajectory data, which is
contained in files in the matlabroot\toolbox\aero\astdemos folder.

• simdata – Contains simulated flight trajectory data, which is set up as a
6DoF array.

• fltdata – Contains actual flight trajectory data which is set up in a custom
format. To access this custom format data, the example must set the body
object TimeSeriesSourceType parameter to Custom and then specify a
custom read function.

1 Load the flight trajectory data.

2-28

Aero.Animation Objects

load simdata
load fltdata

2 Set the time series data for the two bodies.

h.Bodies{1}.TimeSeriesSource = simdata;
h.Bodies{2}.TimeSeriesSource = fltdata;

3 Identify the time series for the second body as custom.

h.Bodies{2}.TimeSeriesSourceType = 'Custom';

4 Specify the custom read function to access the data in fltdata for
the second body. The example provides the custom read function in
matlabroot\toolbox\aero\astdemos\CustomReadBodyTSData.m.

h.Bodies{2}.TimeseriesReadFcn = @CustomReadBodyTSData;

Displaying Body Geometries in a Figure Window
This command creates a figure object for the animation object.

h.show();

Recording Animation Files
Enable recording of the playback of flight trajectories using the animation
object.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

Enable animation recording at any point that you want to preserve an
animation sequence.

Note When choosing the video compression type, keep in mind that you will
need the corresponding viewer software. For example, if you create an AVI
format, you need a viewer such as Windows Media® Player to view the file.

2-29

2 Using Aerospace Toolbox

After you play the animation as described in “Playing Back Flight Trajectories
Using the Animation Object” on page 2-30, astMotion_JPEG contains a
recording of the playback.

Playing Back Flight Trajectories Using the Animation Object
This command plays back the animation bodies for the duration of the time
series data. This playback shows the differences between the simulated and
actual flight data.

h.play();

If you used the Video properties to store the recording, see “Viewing Recorded
Animation Files” on page 2-31 for a description of how to view the files.

2-30

Aero.Animation Objects

Viewing Recorded Animation Files
If you do not have an animation file to view, see “Recording Animation Files”
on page 2-29.

1 Open the folder that contains the animation file you want to view.

2 View the animation file with an application of your choice.

If your animation file is not yet running, start it now from the application.

3 To prevent other h.play commands from overwriting the contents of
the animation file, disable the recording after you are satisfied with the
contents.

h.VideoRecord = 'off';

Manipulating the Camera
This command series shows how you can manipulate the camera on the two
bodies and redisplay the animation. The PositionFcn property of a camera
object controls the camera position relative to the bodies in the animation. In
“Playing Back Flight Trajectories Using the Animation Object” on page 2-30,
the camera object uses a default value for the PositionFcn property. In this
command series, the example references a custom PositionFcn function
that uses a static position based on the position of the bodies. No dynamics
are involved.

Note The custom PositionFcn function is located in the
matlabroot\toolbox\aero\astdemos folder.

1 Set the camera PositionFcn to the custom function
staticCameraPosition.

h.Camera.PositionFcn = @staticCameraPosition;

2 Run the animation again.

h.play();

2-31

2 Using Aerospace Toolbox

Moving and Repositioning Bodies
This series of commands illustrates how to move and reposition bodies.

1 Set the starting time to 0.

t = 0;

2 Move the body to the starting position that is based on the time series data.
Use the Aero.Animation object Aero.Animation.updateBodies method.

h.updateBodies(t);

3 Update the camera position using the custom PositionFcn
function set in the previous section. Use the Aero.Animation object
Aero.Animation.updateCamera method.

h.updateCamera(t);

4 Reposition the bodies by first getting the current body position, then
separating the bodies.

a Get the current body positions and rotations from the objects of both
bodies.

pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
pos2 = h.Bodies{2}.Position;
rot2 = h.Bodies{2}.Rotation;

b Separate and reposition the bodies by moving them to new positions.

h.moveBody(1,pos1 + [0 0 -3],rot1);
h.moveBody(2,pos1 + [0 0 0],rot2);

2-32

Aero.Animation Objects

Creating a Transparency in the First Body
This series of commands illustrates how to create and attach a transparency
to a body. The animation object stores the body geometry as patches. This
example manipulates the transparency properties of these patches (see Patch
Properties).

Note The use of transparencies might decrease animation speed on platforms
that use software OpenGL® rendering (see opengl).

1 Change the body patch properties. Use the Aero.Body PatchHandles
property to get the patch handles for the first body.

patchHandles2 = h.Bodies{1}.PatchHandles;

2 Set the face and edge alpha values that you want for the transparency.

desiredFaceTransparency = .3;

2-33

2 Using Aerospace Toolbox

desiredEdgeTransparency = 1;

3 Get the current face and edge alpha data and change all values to the alpha
values that you want. In the figure, the first body now has a transparency.

for k = 1:size(patchHandles2,1)

tempFaceAlpha = get(patchHandles2(k),'FaceVertexAlphaData');

tempEdgeAlpha = get(patchHandles2(k),'EdgeAlpha');

set(patchHandles2(k),...

'FaceVertexAlphaData',repmat(desiredFaceTransparency,size(tempFaceAlpha)));

set(patchHandles2(k),...

'EdgeAlpha',repmat(desiredEdgeTransparency,size(tempEdgeAlpha)));

end

Changing the Color of the Second Body
This series of commands illustrates how to change the color of a body.
The animation object stores the body geometry as patches. This example
manipulates the FaceVertexColorData property of these patches.

2-34

Aero.Animation Objects

1 Change the body patch properties. Use the Aero.Body PatchHandles
property to get the patch handles for the first body.

patchHandles3 = h.Bodies{2}.PatchHandles;

2 Set the patch color to red.

desiredColor = [1 0 0];

3 Get the current face color and data and propagate the new patch color,
red, to the face.

• The if condition prevents the windows from being colored.

• The name property is stored in the body geometry data
(h.Bodies{2}.Geometry.FaceVertexColorData(k).name).

• The code changes only the indices in patchHandles3 with nonwindow
counterparts in the body geometry data.

Note If you cannot access the name property to determine the parts of
the vehicle to color, you must use an alternative way to selectively color
your vehicle.

for k = 1:size(patchHandles3,1)

tempFaceColor = get(patchHandles3(k),'FaceVertexCData');

tempName = h.Bodies{2}.Geometry.FaceVertexColorData(k).name;

if isempty(strfind(tempName,'Windshield')) &&...

isempty(strfind(tempName,'front-windows')) &&...

isempty(strfind(tempName,'rear-windows'))

set(patchHandles3(k),...

'FaceVertexCData',repmat(desiredColor,[size(tempFaceColor,1),1]));

end

end

Turning Off the Landing Gear of the Second Body
This command series illustrates how to turn off the landing gear on the
second body by turning off the visibility of all the vehicle parts associated
with the landing gear.

2-35

2 Using Aerospace Toolbox

Note The indices into the patchHandles3 vector are determined from the
name property. If you cannot access the name property to determine the
indices, you must use an alternative way to determine the indices that
correspond to the geometry parts.

for k = [1:8,11:14,52:57]
set(patchHandles3(k),'Visible','off')

end

2-36

Aero.VirtualRealityAnimation Objects

Aero.VirtualRealityAnimation Objects
The Aerospace Toolbox interface to virtual reality animation objects
uses the Simulink 3D Animation software. For more information, see
Aero.VirtualRealityAnimation, Aero.Node, and Aero.Viewpoint.

• Create, configure, and initialize an animation object.

• Enable the tracking of changes to virtual worlds.

• Load the animation world.

• Load time series data for simulation.

• Set coordination information for the object.

• Add a chase helicopter to the object.

• Load time series data for chase helicopter simulation.

• Set coordination information for the new object.

• Add a new viewpoint for the helicopter.

• Play the animation.

• Create a new viewpoint.

• Add a route.

• Add another helicopter.

• Remove bodies.

• Revert to the original world.

Running the Example

1 Start the MATLAB software.

2 Enter astvranim in the MATLAB Command Window.

While running, the example performs several steps by issuing a series of
commands.

2-37

2 Using Aerospace Toolbox

Visualize Aircraft Takeoff via Virtual Reality
Animation Object
This example shows how to visualize aircraft takeoff and chase helicopter
with the virtual reality animation object. In this example, you can use the
Aero.VirtualRealityAnimation object to set up a virtual reality animation
based on the asttkoff.wrl file. The scene simulates an aircraft takeoff. The
example adds a chase vehicle to the simulation and a chase viewpoint
associated with the new vehicle.

Create the Animation Object

This code creates an instance of the Aero.VirtualRealityAnimation object.

h = Aero.VirtualRealityAnimation;

Set the Animation Object Properties

This code sets the number of frames per second and the seconds of animation
data per second time scaling. 'FramesPerSecond' controls the rate at which
frames are displayed in the figure window. 'TimeScaling' is the seconds of
animation data per second time scaling.

The 'TimeScaling' and 'FramesPerSecond' properties determine the time
step of the simulation. The settings in this example result in a time step of
approximately 0.5s. The equation is:

(1/FramesPerSecond)*TimeScaling + extra terms to handle for sub-second
precision.

h.FramesPerSecond = 10;
h.TimeScaling = 5;

This code sets the .wrl file to be used in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

Change Directory

The VirtualRealityAnimation object methods use temporary .wrl files to keep
track of changes to the world. This requires the directory containing the

2-38

Aero.VirtualRealityAnimation Objects

original .wrl file to be writable. This code runs the example from a temporary
directory to ensure there are no issues with directory permissions. Note, a
license for Simulink 3D Animation™ is required to run this example.

% Copy file to temporary directory
copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
% Set world filename to the copied .wrl file.
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Initialize the Virtual Reality Animation Object

The initialize method loads the animation world described in the
'VRWorldFilename' field of the animation object. When parsing the world,
node objects are created for existing nodes with DEF names. The initialize
method also opens the Simulink 3D Animation viewer.

h.initialize();

2-39

2 Using Aerospace Toolbox

Set Additional Node Information

This code sets simulation timeseries data. takeoffData.mat contains logged
simulated data. takeoffData is set up as a 'StructureWithTime', which is
one of the default data formats.

2-40

Aero.VirtualRealityAnimation Objects

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Set Coordinate Transform Function

The virtual reality animation object expects positions and rotations in
aerospace body coordinates. If the input data is different, you must create a
coordinate transformation function in order to correctly line up the position
and rotation data with the surrounding objects in the virtual world. This code
sets the coordinate transformation function for the virtual reality animation.

In this particular case, if the input translation coordinates
are [x1,y1,z1], they must be adjusted as follows: [X,Y,Z] =
-[y1,x1,z1]. The custom transform function can be seen here:
matlabroot/toolbox/aero/astdemos/vranimCustomTransform.m

h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Add a Chase Helicopter

This code shows how to add a chase helicopter to the animation object.

You can view all the nodes currently in the virtual reality animation object
by using the nodeInfo method. When called with no output argument, this
method prints the node information to the command window. With an output
argument, the method sets node information to that argument.

h.nodeInfo;

Node Information
1 Camera1
2 Plane
3 _V2
4 Block
5 Terminal
6 _v3
7 Lighthouse

2-41

2 Using Aerospace Toolbox

8 _v1

This code moves the camera angle of the virtual reality figure to view the
aircraft.

set(h.VRFigure,'CameraDirection',[0.45 0 -1]);

2-42

Aero.VirtualRealityAnimation Objects

Use the addNode method to add another node to the object. By default,
each time you add or remove a node or route, or when you call the saveas
method, Aerospace Toolbox displays a message about the current .wrl file
location. To disable this message, set the 'ShowSaveWarning' property in
the VirtualRealityAnimation object.

h.ShowSaveWarning = false;
h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl'])

2-43

2 Using Aerospace Toolbox

Another call to nodeInfo shows the newly added Node objects.

h.nodeInfo

2-44

Aero.VirtualRealityAnimation Objects

Node Information
1 Camera1
2 Plane
3 _V2
4 Block
5 Terminal
6 _v3
7 Lighthouse
8 _v1
9 Lynx
10 Lynx_Inline

Adjust newly added helicopter to sit on runway.

[~, idxLynx] = find(strcmp('Lynx',h.nodeInfo));
h.Node{idxLynx}.VRNode.translation = [0 1.5 0];

This code sets data properties for the chase helicopter. The
'TimeseriesSourceType' is the default 'Array6DoF', so no additional
property changes are needed. The same coordinate transform function
(vranimCustomTransform) is used for this node as the preceding node. The
previous call to nodeInfo returned the node index (2).

load chaseData
h.Nodes{idxLynx}.TimeseriesSource = chaseData;
h.Nodes{idxLynx}.CoordTransformFcn = @vranimCustomTransform;

Create New Viewpoint

This code uses the addViewpoint method to create a new viewpoint named
’chaseView’. The new viewpoint will appear in the viewpoint pulldown menu
in the virtual reality window as "View From Helicopter". Another call to
nodeInfo shows the newly added node objects. The node is created as a child
of the chase helicopter.

h.addViewpoint(h.Nodes{idxLynx}.VRNode,'children','chaseView','View From He

2-45

2 Using Aerospace Toolbox

Play Animation

The play method runs the simulation for the specified timeseries data.

h.play();

2-46

Aero.VirtualRealityAnimation Objects

Play Animation From Helicopter

This code sets the orientation of the viewpoint via the vrnode object associated
with the node object for the viewpoint. In this case, it will change the
viewpoint to look out the left side of the helicopter at the plane.

[~, idxChaseView] = find(strcmp('chaseView',h.nodeInfo));
h.Nodes{idxChaseView}.VRNode.orientation = [0 1 0 convang(200,'deg','rad')]
set(h.VRFigure,'Viewpoint','View From Helicopter');

2-47

2 Using Aerospace Toolbox

Add ROUTE

This code calls the addRoute method to add a ROUTE command to connect
the plane position to the Camera1 node. This will allow for the "Ride on the
Plane" viewpoint to function as intended.

2-48

Aero.VirtualRealityAnimation Objects

h.addRoute('Plane','translation','Camera1','translation');

The scene from the helicopter viewpoint

This code plays the animation.

2-49

2 Using Aerospace Toolbox

h.play();

Add Another Body

2-50

Aero.VirtualRealityAnimation Objects

This code adds another helicopter to the scene. It also changes to another
viewpoint to view all three bodies in the scene at once.

set(h.VRFigure,'Viewpoint','See Whole Trajectory');
h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']
h.nodeInfo

Node Information
1 Camera1
2 Plane
3 _V2
4 Block
5 Terminal
6 _v3
7 Lighthouse
8 _v1
9 Lynx
10 Lynx_Inline
11 chaseView
12 Lynx1
13 Lynx1_Inline

2-51

2 Using Aerospace Toolbox

Adjust newly added helicopter to sit above runway.

[~, idxLynx1] = find(strcmp('Lynx1',h.nodeInfo));
h.Node{idxLynx1}.VRNode.translation = [0 1.3 0];

2-52

Aero.VirtualRealityAnimation Objects

Remove Body

This code uses the removeNode method to remove the second helicopter.
removeNode takes either the node name or node index (as obtained from
nodeInfo). The associated inline node is removed as well.

h.removeNode('Lynx1');
h.nodeInfo

Node Information
1 Camera1
2 Plane
3 _V2
4 Block
5 Terminal
6 _v3
7 Lighthouse
8 _v1
9 Lynx
10 Lynx_Inline
11 chaseView

2-53

2 Using Aerospace Toolbox

Revert To Original World

The original filename is stored in the 'VRWorldOldFilename' property of the
animation object. To bring up the original world, set 'VRWorldFilename' to
the original name and reinitializing it.

2-54

Aero.VirtualRealityAnimation Objects

h.VRWorldFilename = h.VRWorldOldFilename{1};
h.initialize();

Close and Delete World

2-55

2 Using Aerospace Toolbox

To close and delete

h.delete();

2-56

Aero.FlightGearAnimation Objects

Aero.FlightGearAnimation Objects
The Aerospace Toolbox interface to the FlightGear flight simulator enables
you to visualize flight data in a three-dimensional environment. The
third-party FlightGear simulator is an open source software package available
through a GNU® General Public License (GPL). This section describes how
to obtain and install the third-party FlightGear flight simulator. It also
describes how to play back 3-D flight data by using a FlightGear example,
provided with your Aerospace Toolbox software.

In this section...

“About the FlightGear Interface” on page 2-57

“Configuring Your Computer for FlightGear” on page 2-58

“Install and Start FlightGear” on page 2-62

“Flight Simulator Interface Example” on page 2-63

“Running the Example” on page 2-65

“Flight Trajectory Data” on page 2-66

About the FlightGear Interface
The FlightGear flight simulator interface included with the Aerospace Toolbox
product is a unidirectional transmission link from the MATLAB software to
FlightGear. It uses FlightGear’s published net_fdm binary data exchange
protocol. Data is transmitted via UDP network packets to a running instance
of FlightGear. The toolbox supports multiple standard binary distributions of
FlightGear. For interface details, see “Flight Simulator Interface Example”
on page 2-63.

FlightGear is a separate software entity that is not created, owned, or
maintained by MathWorks.

• To report bugs in or request enhancements to the Aerospace Toolbox
FlightGear interface, contact MathWorks technical support at
http://www.mathworks.com/support/.

• To report bugs or request enhancements to FlightGear itself, go to
www.flightgear.org and use the contact page.

2-57

http://www.mathworks.com/support/
http://www.flightgear.org

2 Using Aerospace Toolbox

Supported FlightGear Versions
The Aerospace Toolbox product supports the following FlightGear versions:

• v2.0

• v2.4

• v2.6

• v2.8

• v2.10

Obtaining FlightGear Software
You can obtain FlightGear software from www.flightgear.org in the
download area or by ordering CDs from FlightGear. The download area
contains extensive documentation for installation and configuration. Because
FlightGear is an open source project, source downloads are also available for
customization and porting to custom environments.

Configuring Your Computer for FlightGear
You must have a high-performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or the
hardware requirements and documentation areas of the FlightGear Web
site, www.flightgear.org.

MathWorks tests of FlightGear performance and stability indicate sensitivity
to computer video cards, driver versions, and driver settings. You must have
OpenGL support with hardware acceleration activated. The OpenGL settings
are particularly important. Without proper setup, performance can drop from
about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Microsoft Windows
For Windows® users, use the following graphics recommendations:

• A graphics card with acceptable OpenGL performance (as outlined at the
FlightGear Web site, www.flightgear.org).

• The latest tested and stable driver release for your video card. Test the
driver thoroughly on a few computers before deploying to others.

2-58

http://www.flightgear.org
http://www.flightgear.org
http://www.flightgear.org

Aero.FlightGearAnimation Objects

For Microsoft® Windows XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. Problems in the driver can
cause the Windows operating system to lock or crash. Before buying a large
number of computers for 3-D applications, with your vendor, test one or two
computers to find a combination of hardware, operating system, drivers,
and settings that are stable for your applications.

For more information, see FlightGear Hardware Recommendations.

Setting Up OpenGL Graphics on Windows
For complete information on Silicon Graphics OpenGL settings, refer to the
documentation at the OpenGL Web site, www.opengl.org.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on
your video card. On Windows, access this configuration through Start >
Settings > Control Panel > Display, which opens the following dialog
box. Select the Settings tab.

2-59

http://wiki.flightgear.org/FlightGear_Hardware_Recommendations
http://www.opengl.org/

2 Using Aerospace Toolbox

2 In the lower right of the dialog box, click the Advanced button, which
opens the graphics card custom configuration dialog box. Go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL
pane looks like the following graphic.

2-60

Aero.FlightGearAnimation Objects

3 For best performance, near the top of the dialog box, move the Main
Settings slider to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux, Mac OS X, and Other Platforms
FlightGear distributions are available for Linux®, Mac OS X, and other UNIX®

platforms from the FlightGear Web site, www.flightgear.org. Installation
on these platforms, like Windows, requires careful configuration of graphics
cards and drivers. Consult the documentation and hardware requirements
sections at the FlightGear Web site.

2-61

http://www.flightgear.org

2 Using Aerospace Toolbox

Install and Start FlightGear
The extensive FlightGear documentation guides you through the installation.
For complete installation instructions, consult the documentation section of
the FlightGear Web site www.flightgear.org.

Note:

• Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

Have a minimum of 512 megabytes of system RAM and 128 megabytes of
video RAM for reasonable performance.

• Have sufficient disk space for the FlightGear download and installation.

• Before you install FlightGear, configure your computer graphics card. See
the preceding section, “Configuring Your Computer for FlightGear” on
page 2-58.

• Before installing FlightGear, shut down all running applications (including
the MATLAB software).

• The operational stability of FlightGear is especially sensitive during
startup. It is best to not move, resize, mouse over, overlap, or cover up
the FlightGear window until the initial simulation scene appears after
the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does not work well or at all with
very high altitude and orbital views.

The Aerospace Toolbox product supports FlightGear on a number of platforms
(http://www.mathworks.com/products/aerotb/requirements.html). The
following table lists the properties to be aware of before you start using
FlightGear.

2-62

http://www.flightgear.org
http://www.mathworks.com/products/aerotb/requirements.html

Aero.FlightGearAnimation Objects

FlightGear
Property

Folder Description Platforms Typical Location

Windows C:\Program Files\FlightGear
(default)

Linux Directory into which you installed
FlightGear

FlightGearBase-
Directory

FlightGear
installation folder.

Mac /Applications
(folder into which you dragged the
FlightGear icon)

Windows C:\Program Files\-
FlightGear\data\-
Aircraft\HL20
(default)

Linux $FlightGearBaseDirectory/-
data/Aircraft/HL20

GeometryModelName Model geometry
folder

Mac $FlightGearBaseDirectory/-
FlightGear.app/Contents/-
Resources/data/Aircraft/HL20

Flight Simulator Interface Example
The Aerospace Toolbox product provides an example named Displaying
Flight Trajectory Data. This example shows you how you can visualize flight
trajectories with FlightGear Animation object. The example is intended to be
modified depending on the particulars of your FlightGear installation. Use
this example to play back your own 3-D flight data with FlightGear.

Before attempting to simulate this model, you must have FlightGear installed
and configured. See “About the FlightGear Interface” on page 2-57.

To run the example:

• Import the aircraft geometry into FlightGear.

• Run the example. The example performs the following steps:

- Loads recorded trajectory data.

2-63

2 Using Aerospace Toolbox

- Creates a time series object from trajectory data.

- Creates a FlightGearAnimation object.

• Modify the animation object properties, if needed.

• Create a run script for launching the FlightGear flight simulator.

• Start the FlightGear flight simulator.

• Play back the flight trajectory.

Import the Aircraft Geometry into FlightGear
Before running the example, copy the aircraft geometry model into
FlightGear. From the following procedures, choose the one appropriate for
your platform. This section assumes that you have read “Install and Start
FlightGear” on page 2-62.

If your platform is Windows:

1 Go to your installed FlightGear folder. Open the data folder, and then the
Aircraft folder: FlightGear\data\Aircraft\.

2 If you have previously run the Aerospace Blockset NASA HL-20 with
FlightGear Interface example, you might already have an HL20 subfolder
there.

Otherwise, copy the HL20 folder from the
matlabroot\toolbox\aero\aerodemos\ folder to the
FlightGear\data\Aircraft\ folder. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml.
The file matlabroot\toolbox\aero\aerodemos\HL20\models\HL20.xml
defines the geometry.

If your platform is Linux:

1 Go to your installed FlightGear folder. Open the data folder, then the
Aircraft folder: $FlightGearBaseDirectory/data/Aircraft/.

2 If you have previously run the Aerospace Blockset NASA HL-20 with
FlightGear Interface example, you might already have an HL20 subfolder

2-64

Aero.FlightGearAnimation Objects

there. If that is the case, you do not have to do anything, because you can
use the existing geometry model.

Otherwise, copy the HL20 folder from the
matlabroot/toolbox/aero/aerodemos/ folder to the
$FlightGearBaseDirectory/data/Aircraft/ folder. This folder contains
the preconfigured geometries for the HL-20 simulation and HL20-set.xml.
The file matlabroot/toolbox/aero/aerodemos/HL20/models/HL20.xml
defines the geometry.

If your platform is Mac:

1 Open a terminal.

2 List the contents of the Aircraft folder. For example, type:

ls $FlightGearBaseDirectory/data/Aircraft/

3 If you have previously run the Aerospace Blockset NASA HL-20 with
FlightGear Interface example, you might already have an HL20 subfolder
there. In this case, you do not have to do anything, because you can use the
existing geometry model. Continue to “Running the Example” on page 2-27.

Otherwise, copy the HL20 folder from the

matlabroot/toolbox/aero/aerodemos/

folder to the

$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

folder. This folder contains the preconfigured geometries
for the HL-20 simulation and HL20-set.xml. The file
matlabroot/toolbox/aero/aerodemos/HL20/models/HL20.xml
defines the geometry.

Running the Example

1 Start the MATLAB software.

2 Enter astfganim in the MATLAB Command Window.

2-65

2 Using Aerospace Toolbox

While running, the example performs several steps by issuing a series of
commands.

Flight Trajectory Data

Loading Recorded Flight Trajectory Data
The flight trajectory data for this example is stored in a comma separated
value formatted file. Using dlmread, the data is read from the file starting at
row 1 and column 0, which omits the header information.

tdata = dlmread('asthl20log.csv',',',1,0);

Creating a Time Series Object from Trajectory Data
The time series object, ts, is created from the latitude, longitude, altitude,
Euler angle data, and the time array in tdata using the MATLAB timeseries
command. Latitude, longitude, and Euler angles are also converted from
degrees to radians using the convang function.

ts = timeseries([convang(tdata(:,[3 2]),'deg','rad') ...

tdata(:,4) convang(tdata(:,5:7),'deg','rad')],tdata(:,1));

Creating a FlightGearAnimation Object
This series of commands creates a FlightGearAnimation object:

1 Open a FlightGearAnimation object.

h = fganimation;

2 Set FlightGearAnimation object properties for the time series.

h.TimeseriesSourceType = 'Timeseries';
h.TimeseriesSource = ts;

3 Set FlightGearAnimation object properties relating to FlightGear.
These properties include the path to the installation folder, the version
number, the aircraft geometry model, and the network information for the
FlightGear flight simulator.

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear210';

2-66

Aero.FlightGearAnimation Objects

h.FlightGearVersion = '2.10';
h.GeometryModelName = 'HL20';
h.DestinationIpAddress = '127.0.0.1';
h.DestinationPort = '5502';

4 Set the initial conditions (location and orientation) for the FlightGear
flight simulator.

h.AirportId = 'KSFO';
h.RunwayId = '10L';
h.InitialAltitude = 7224;
h.InitialHeading = 113;
h.OffsetDistance = 4.72;
h.OffsetAzimuth = 0;

5 Set the seconds of animation data per second of wall-clock time.

h.TimeScaling = 5;

6 Check the FlightGearAnimation object properties and their values.

get(h)

The example stops running and returns the FlightGearAnimation object, h:

TimeseriesSource: [196x1 timeseries]
TimeseriesSourceType: 'Timeseries'

TimeseriesReadFcn: @TimeseriesRead
TimeScaling: 5

FramesPerSecond: 12
FlightGearVersion: '2.10'

OutputFileName: 'runfg.bat'
FlightGearBaseDirectory: 'C:\Program Files\FlightGear210'

GeometryModelName: 'HL20'
DestinationIpAddress: '127.0.0.1'

DestinationPort: '5502'
AirportId: 'KSFO'
RunwayId: '10L'

InitialAltitude: 7224
InitialHeading: 113
OffsetDistance: 4.7200
OffsetAzimuth: 0

2-67

2 Using Aerospace Toolbox

You can now set the object properties for data playback (see “Modifying the
FlightGearAnimation Object Properties” on page 2-68).

Modifying the FlightGearAnimation Object Properties
Modify the FlightGearAnimation object properties as needed. If your
FlightGear installation folder is other than that in the example (for example,
FlightGear), modify the FlightGearBaseDirectory property by issuing
the following command:

h.FlightGearBaseDirectory = 'C:\Program Files\FlightGear';

Similarly, if you want to use a particular file name for the run script, modify
the OutputFileName property.

Verify the FlightGearAnimation object properties:

get(h)

You can now generate the run script (see “Generating the Run Script” on
page 2-68).

Generating the Run Script
To start FlightGear with the initial conditions (location, date, time, weather,
operating modes) that you want, it is best to create a run script by using
the GenerateRunScript command:

GenerateRunScript(h)

By default, GenerateRunScript saves the run script as a text file
named runfg.bat. You can specify a different name by modifying the
OutputFileName property of the FlightGearAnimation object, as described
in the previous step.

This file does not need to be generated each time the data is viewed, only
when the initial conditions or FlightGear information changes.

You are now ready to start FlightGear (see “Starting the FlightGear Flight
Simulator” on page 2-69).

2-68

Aero.FlightGearAnimation Objects

Installing Additional FlightGear Scenery
When you install the FlightGear software, the installation provides a basic
level of scenery files. The FlightGear documentation guides you through
installing scenery as part the general FlightGear installation.

If you need to install more FlightGear scenery files, see the instructions at
http://www.flightgear.org. Those instructions describe how to install the
additional scenery in a default location.

If you must install additional scenery in a non-standard location, try
setting the FG_SCENERY environment variable in the script output from the
GenerateRunScript function. For a description of the FG_SCENERY variable,
see the documentation at http://www.flightgear.org.

Note Each time that you run the GenerateRunScript function, it creates a
new script. It overwrites any edits that you have added.

Starting the FlightGear Flight Simulator
To start FlightGear from the MATLAB command prompt, use the system
command to execute the run script. Provide the name of the output file
created by GenerateRunScript as the argument:

system('runfg.bat &');

FlightGear starts in a separate window.

Tip With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit, helicopter, chase, and so on.

You are now ready to play back data (see “Playing Back the Flight Trajectory”
on page 2-70).

2-69

http://www.flightgear.org/
http://www.flightgear.org/

2 Using Aerospace Toolbox

Tip If FlightGear uses more computer resources than you want, you can
change its scheduling priority to a lesser one. For example, see commands
like Windows start and Linux nice or their equivalents.

Playing Back the Flight Trajectory
Once FlightGear is running, the FlightGearAnimation object can start to
communicate with FlightGear. To animate the flight trajectory data, use
the play command:

play(h)

The following illustration shows a snapshot of flight data playback in tower
view without yaw.

2-70

3

Alphabetical List

Aero.Animation.addBody

Purpose Add loaded body to animation object and generate its patches

Syntax idx = addBody(h,b)
idx = h.addBody(b)

Description idx = addBody(h,b) and idx = h.addBody(b) add a loaded body, b,
to the animation object h and generates its patches. idx is the index of
the body to be added.

Input
Arguments

h Animation object.

b Loaded body.

Output
Arguments

idx Index of the body to be added.

Examples Add a second body to the list that is a pointer to the first body. This
means that if you change the properties of one body, the properties of
the other body change correspondingly.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
b = h.Bodies{1};
idx2 = h.addBody(b);

3-2

addNode (Aero.VirtualRealityAnimation)

Purpose Add existing node to current virtual reality world

Syntax addNode(h, node_name, wrl_file)
h.addNode(node_name, wrl_file)

Description addNode(h, node_name, wrl_file) and h.addNode(node_name,
wrl_file) add an existing node, node_name, to the current virtual
reality world. The wrl_file is the file from which the new node is
taken. addNode adds a new node named node_name, which contains (or
points to) the wrl_file. node_name must be unique from other node
names in the same .wrl file. wrl_file must contain the node to be
added. You must specify the full path for this file. The vrnode object
associated with the node object must be defined using a DEF statement
in the .wrl file. This method creates a node object on the world of type
Transform.

When you use the addNode method to add a node, all the objects in the
.wrl file will be added to the virtual reality animation object under one
node. If you want to add separate nodes for the objects in the .wrl file,
place each node in a separate .wrl file.

Examples Add node to world defined in chaseHelicopter.wrl.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

See Also Aero.Node | move | removeNode | updateNodes |
Aero.VirtualRealityAnimation

3-3

addRoute (Aero.VirtualRealityAnimation)

Purpose Add VRML ROUTE statement to virtual reality animation

Syntax addRoute(h, nodeOut, eventOut, nodeIn, eventIn)
h.addNode(nodeOut, eventOut, nodeIn, eventIn)

Description addRoute(h, nodeOut, eventOut, nodeIn, eventIn) and
h.addNode(nodeOut, eventOut, nodeIn, eventIn) add a VRML
ROUTE statement to the virtual reality animation, where nodeOut
is the node from which information is routed, eventOut is the event
(property), nodeIn is the node to which information is routed, and
eventIn is the receiving event (property).

Examples Add a ROUTE command to connect the Plane position to the Camera1
node.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

h.addRoute('Plane','translation','Camera1','translation');

See Also addViewpoint

3-4

addViewpoint (Aero.VirtualRealityAnimation)

Purpose Add viewpoint for virtual reality animation

Syntax addViewpoint(h, parent_node, parent_field, node_name)
h.addViewpoint(parent_node, parent_field, node_name)
addViewpoint(h, parent_node, parent_field, node_name,

description)
h.addViewpoint(parent_node, parent_field, node_name,

description)
addViewpoint(h, parent_node, parent_field, node_name,

description, position)
h.addViewpoint(parent_node, parent_field, node_name,

description, position)
addViewpoint(h, parent_node, parent_field, node_name,

description, position, orientation)
h.addViewpoint(parent_node, parent_field, node_name,

description, position, orientation)

Description addViewpoint(h, parent_node, parent_field, node_name) and
h.addViewpoint(parent_node, parent_field, node_name) add a
viewpoint named node_name whose parent_node is the parent node
field of the vrnode object and whose parent_field is a valid parent
field of the vrnode object to the virtual world animation object, h.

addViewpoint(h, parent_node, parent_field, node_name,
description) and h.addViewpoint(parent_node, parent_field,
node_name, description) add a viewpoint named node_name whose
parent_node is the parent node field of the vrnode object and whose
parent_field is a valid parent field of the vrnode object to the virtual
world animation object, h. description is the string you want to
describe the viewpoint.

addViewpoint(h, parent_node, parent_field, node_name,
description, position) and h.addViewpoint(parent_node,
parent_field, node_name, description, position) add a
viewpoint named node_name whose parent_node is the parent node
field of the vrnode object and whose parent_field is a valid parent
field of the vrnode object to the virtual world animation object, h.
description is the string you want to describe the viewpoint and

3-5

addViewpoint (Aero.VirtualRealityAnimation)

position is the position of the viewpoint. Specify position using
VRML coordinates (x y z).

addViewpoint(h, parent_node, parent_field,
node_name, description, position, orientation) and
h.addViewpoint(parent_node, parent_field, node_name,
description, position, orientation) add a viewpoint named
node_name whose parent_node is the parent node field of the vrnode
object and whose parent_field is a valid parent field of the vrnode
object to the virtual world animation object, h. description is the string
you want to describe the viewpoint, position is the position of the
viewpoint, and orientation is the orientation of the viewpoint. Specify
position using VRML coordinates (x y z). Specify orientation in a
VRML axes angle format (x y z Θ).

Note If you call addViewpoint with only the description argument,
you must set the position and orientation of the viewpoint with the
Simulink 3D Animation vrnode/setfield function. This requires you
to use VRML coordinates.

Examples Add a viewpoint named chaseView.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

See Also addRoute | removeViewpoint

3-6

Aero.Animation

Purpose Visualize aerospace animation

Description Use the Aero.Animation class to visualize flight data without any other
tool or toolbox. You only need the Aerospace Toolbox to visualize this
data.

Construction Aero.Animation Construct animation object

Methods addBody Add loaded body to animation
object and generate its patches

createBody Create body and its associated
patches in animation

delete Destroy animation object

hide Hide animation figure

initialize Create animation object figure
and axes and build patches for
bodies

initIfNeeded Initialize animation graphics if
needed

moveBody Move body in animation object

play Animate Aero.Animation object
given position/angle time series

removeBody Remove one body from animation

show Show animation object figure

updateBodies Update bodies of animation object

updateCamera Update camera in animation
object

3-7

Aero.Animation

Properties Bodies Specify name of animation object

Camera Specify camera that animation
object contains

Figure Specify name of figure object

FigureCustomizationFcn Specify figure customization
function

FramesPerSecond Animation rate

Name Specify name of animation object

TCurrent Current time

TFinal End time

TimeScaling Scaling time

TStart Start time

VideoCompression Video recording compression file
type

VideoFileName Video recording file name

VideoQuality Video recording quality

VideoRecord Video recording

VideoTFinal Video recording stop time for
scheduled recording

VideoTStart Video recording start time for
scheduled recording

See Also Aero.FlightGearAnimation | Aero.VirtualRealityAnimation

How To • “Aero.Animation Objects” on page 2-27

3-8

Aero.Animation

Purpose Construct animation object

Syntax h = Aero.Animation

Description h = Aero.Animation constructs an animation object. The animation
object is returned to h.

Note The Aero.Animation constructor does not retain the properties
of previously created animation objects, even those that you have saved
to a MAT-file. This means that subsequent calls to the animation object
constructor always create animation objects with default properties.

Examples h=Aero.Animation

3-9

Aero.Body

Purpose Create body object for use with animation object

Syntax h = Aero.Body

Description h = Aero.Body constructs a body for an animation object. The
animation object is returned in h. To use the Aero.Body object, you
typically:

1 Create the animation body.

2 Configure or customize the body object.

3 Load the body.

4 Generate patches for the body (requires an axes from a figure).

5 Set time series data source.

6 Move or update the body.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates
for the body geometry and the time series data. It expects the rotation
order z-y-x (psi, theta, phi).

Convert time series data from other coordinate systems on the fly by
registering a different CoordTransformFcn function.

Constructor
Summary

Constructor Description

Body Construct body object for use with animation
object.

3-10

Aero.Body

Method
Summary

Method Description

findstartstoptimes Return start and stop times of time series
data.

generatePatches Generate patches for body with loaded face,
vertex, and color data.

load Get geometry data from source.

move Change Aero.Body position and orientation.

update Changes body position and orientation
versus time data.

Property
Summary

Property Description Values

CoordTransformFcn Specify a function that
controls the coordinate
transformation.

string

Name Specify name of body.

Position Specify position of
body.

MATLAB array

Rotation Specify rotation of
body.

MATLAB array

Geometry Specify geometry of
body.

handle

PatchGeneration-
Fcn

Specify patch
generation function.

MATLAB array

PatchHandles Specify patch handles. MATLAB array

ViewingTransform Specify viewing
transform.

MATLAB array

TimeseriesSource Specify time series
source.

MATLAB array

3-11

Aero.Body

Property Description Values

TimeseriesSource-
Type

Specify the type of time
series data stored in
'TimeseriesSource'.
Five values are
available. They are
listed in the following
table. The default
value is 'Array6DoF'.

string

TimeseriesReadFcn Specify time series
read function.

MATLAB array

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

3-12

Aero.Body

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

See Also Aero.Geometry

3-13

Aero.Camera

Purpose Construct camera object for use with animation object

Syntax h = Aero.Camera

Description h = Aero.Camera constructs a camera object h for use with an
animation object. The camera object uses the registered coordinate
transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

By default, an Aero.Body object natively uses aircraft x-y-z coordinates
for the body geometry and the time series data. Convert time series
data from other coordinate systems on the fly by registering a different
CoordTransformFcn function.

Constructor
Summary

Constructor Description

Camera Construct camera object for use with animation
object.

Method
Summary

Method Description

update Update camera position based on time and
position of other Aero.Body objects.

Property
Summary

Property Description Values

CoordTransformFcn Specify a function that
controls the coordinate
transformation.

MATLAB array

PositionFcn Specify a function that
controls the position of
a camera relative to an
animation body.

MATLAB array

Position Specify position of
camera.

MATLAB array
[-150,-50,0]

3-14

Aero.Camera

Property Description Values

Offset Specify offset of
camera.

MATLAB array
[-150,-50,0]

AimPoint Specify aim point of
camera.

MATLAB array
[0,0,0]

UpVector Specify up vector of
camera.

MATLAB array
[0,0,-1]

ViewAngle Specify view angle of
camera.

MATLAB array {3}

ViewExtent Specify view extent of
camera.

MATLAB array
{[-50,50]}

xlim Specify x-axis limit of
camera.

MATLAB array
{[-50,50]}

ylim Specify y-axis limit of
camera.

MATLAB array
{[-50,50]}

zlim Specify z-axis limit of
camera.

MATLAB array
{[-50,50]}

PrevTime Specify previous time
of camera.

MATLAB array {0}

UserData Specify custom data. MATLAB array {[]}

See Also Aero.Geometry

3-15

Aero.FlightGearAnimation

Purpose Construct FlightGear animation object

Syntax h = Aero.FlightGearAnimation

Description h = Aero.FlightGearAnimation constructs a FlightGear animation
object. The FlightGear animation object is returned to h.

Constructor Method Description

fganimation Construct FlightGear animation object.

Method
Summary

Method Description

ClearTimer Clear and delete timer for animation of FlightGear
flight simulator.

delete Destroy FlightGear animation object.

GenerateRunScriptGenerate run script for FlightGear flight simulator.

initialize Set up FlightGear animation object.

play Animate FlightGear flight simulator using given
position/angle time series.

SetTimer Set name of timer for animation of FlightGear flight
simulator.

update Update position data to FlightGear animation object.

3-16

Aero.FlightGearAnimation

Property
Summary

Properties Description

TimeseriesSource Specify variable that contains the time series
data.

TimeseriesSource-
Type

Specify the type of time series data stored in
'TimeseriesSource'. Five values are available.
They are listed in the 'TimeseriesSourceType'
property table. The default value is
'Array6DoF'.

TimeseriesReadFcn Specify a function to read the time series data if
'TimeseriesSourceType' is 'Custom'.

TimeScaling Specify the seconds of animation data per
second of wall-clock time. The default ratio is 1.

FramesPerSecond Specify the number of frames per second used to
animate the 'TimeseriesSource'. The default
value is 12 frames per second.

FlightGearVersion Select your FlightGear software version:
'0.9.3', '0.9.8', '0.9.9', '0.9.10', '1.0',
'1.9.1', '2.0', `2.4', `2.6', `2.8', or
`2.10'. The default version is '2.10'.

Note If you are using a FlightGear version
older than 2.0, the software returns a warning
when you use the initializemethod. Consider
upgrading your FlightGear version. For
more information, see “Supported FlightGear
Versions” on page 2-58.

3-17

Aero.FlightGearAnimation

Properties Description

OutputFileName Specify the name of the output file. The file
name is the name of the command you will
use to start FlightGear with these initial
parameters. The default value is 'runfg.bat'.

FlightGearBase-
Directory

Specify the name of your FlightGear
installation folder. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the folder containing
the desired model geometry in the
FlightGear\data\Aircraft folder. The
default value is 'HL20'.

DestinationIp-
Address

Specify your destination IP address. The default
value is '127.0.0.1'.

DestinationPort Specify your network flight dynamics model
(fdm) port. This destination port should be an
unused port that you can use when you launch
FlightGear. The default value is '5502'.

AirportId Specify the airport ID. The list of supported
airports is available in the FlightGear interface,
under Location. The default value is 'KSFO'.

RunwayId Specify the runway ID. The default value is
'10L'.

InitialAltitude Specify the initial altitude of the aircraft, in
feet. The default value is 7224 feet.

InitialHeading Specify the initial heading of the aircraft, in
degrees. The default value is 113 degrees.

OffsetDistance Specify the offset distance of the aircraft from
the airport, in miles. The default value is 4.72
miles.

3-18

Aero.FlightGearAnimation

Properties Description

OffsetAzimuth Specify the offset azimuth of the aircraft, in
degrees. The default value is 0 degrees.

TStart Specify start time as a double.

TFinal Specify end time as a double.

Architecture Specify the architecture the FlightGear software
is running on. GenerateRunScript takes this
setting into account when generating the bash
run script to start FlightGear. The platforms
are listed in the 'Architecture' table. The
default value is 'Default'.

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

3-19

Aero.FlightGearAnimation

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

Specify one of these values for the Architecture property:

'Default' Architecture the MATLAB software is
currently running on. If the property
has this value, GenerateRunScript
creates a bash file that can work in
the architecture that MATLAB is
currently running on.

'Win32' Windows (32-bit) architecture.

'Win64' Windows (64-bit) architecture.

'Mac' Mac OS X (64-bit) architecture.

'Linux' Linux (64-bit) architecture.

Examples Construct a FlightGear animation object, h:

h = fganimation

3-20

Aero.FlightGearAnimation

See Also fganimation | generaterunscript | play

3-21

Aero.Geometry

Purpose Construct 3-D geometry for use with animation object

Syntax h = Aero.Geometry

Description h = Aero.Geometry defines a 3-D geometry for use with an animation
object.

This object supports the attachment of transparency data from an Ac3d
file to patch generation.

Constructor
Summary

Constructor Description

Geometry Construct 3-D geometry for use with animation
object.

Method
Summary

Method Description

read Read geometry data using current reader.

Property
Summary

Property Description Values

Name Specify name of
geometry.

string

Source Specify geometry
data source.

string {['Auto'], 'Variable',
'MatFile', 'Ac3dFile', 'Custom'}

Reader Specify geometry
reader.

MATLAB array

3-22

Aero.Geometry

Property Description Values

MATLAB structure with the following
fields

name String that contains
the name of the
geometry being
loaded.

faces See Faces on Patch
Properties.

vertices See Vertices on
Patch Properties.

cdata See CData on Patch
Properties.

FaceVertexColorData Specify the color of
the geometry face
vertex.

alpha See
FaceVertexAlphaData
on Patch
Properties.

See Also read

3-23

../../matlab/ref/patch_props.html#Faces
../../matlab/ref/patch_props.html#Vertices
../../matlab/ref/patch_props.html#CData
../../matlab/ref/patch_props.html#FaceVertexAlphaData

Aero.Node

Purpose Create node object for use with virtual reality animation

Syntax h = Aero.Node

Description h = Aero.Node creates a node object for use with virtual reality
animation. Typically, you do not need to create a node object with
this method. This is because the .wrl file stores the information for a
virtual reality scene. During the initialization of the virtual reality
animation object, any node with a DEF statement in the specified .wrl
file has a node object created.

When working with nodes, consider the translation and rotation.
Translation is a 1-by-3 matrix in the aerospace body coordinate system
defined for the VirtualRealityAnimation object or another coordinate
system. In the latter case, you can use the CoordTransformFcn function
to move it into the defined aerospace body coordinate system. The
defined aerospace body coordinate system is defined relative to the
screen as x-left, y-in, z-down.

Rotation is a 1-by-3 matrix, in radians, that specifies the rotations
about the right-hand x-y-z sequence of coordinate axes. The order
of application of the rotation is z-y-x (r-q-p). This function uses the
CoordTransformFcn to apply the translation and rotation from the
input coordinate system to the defined aerospace body coordinate
system. The function then moves the translation and rotation from
the defined aerospace body coordinate system to the defined VRML
x-y-z coordinates for the VirtualRealityAnimation object. The defined
VRML coordinate system is defined relative to the screen as x-right,
y-up, z-out.

Constructor
Summary

Constructor Description

Node Create node object for use with virtual reality
animation.

3-24

Aero.Node

Method
Summary

Method Description

findstart-
stoptimes

Return start and stop times for time series data.

move Change node translation and rotation.

update Change node position and orientation versus time
data.

Property
Summary

Property Description Values

Name Specify name of the
node object.

string

VRNode Return the handle
to the vrnode object
associated with the
node object.

MATLAB array

CoordtransformFcn Specify a function that
controls the coordinate
transformation.

MATLAB array

TimeseriesSource Specify time series
source.

MATLAB array

Timeseries-
SourceType

Specify the type of time
series data stored in
'TimeseriesSource'.
Five values are
available. They are
listed in the following
table. The default
value is 'Array6DoF'.

string

Timeseries-
ReadFcn

Specify time series
read function.

MATLAB array

3-25

Aero.Node

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

lat lon alt phi theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: lat lon
alt

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
lat lon alt phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

3-26

Aero.Node

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
lat alt theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

3-27

Aero.Viewpoint

Purpose Create viewpoint object for use in virtual reality animation

Syntax h = Aero.Viewpoint

Description h = Aero.Viewpoint creates a viewpoint object for use with virtual
reality animation.

Constructor
Summary

Constructor Description

Viewpoint Create node object for use with virtual reality
animation.

Property
Summary

Property Description Values

Name Specify name of the
node object.

string

Node Specify node object
that contains the
viewpoint node.

MATLAB array

3-28

Aero.VirtualRealityAnimation

Purpose Construct virtual reality animation object

Syntax h = Aero.VirtualRealityAnimation

Description h = Aero.VirtualRealityAnimation constructs a virtual reality
animation object. The animation object is returned to h. The animation
object has the following methods and properties.

Constructor
Summary

Constructor Description

VirtualReality-
Animation

Construct virtual reality animation object.

Method
Summary

Method Description

addNode Add existing node to current virtual reality
world.

addRoute Add VRML ROUTE statement to virtual reality
animation.

addViewpoint Add viewpoint for virtual reality animation.

delete Destroy virtual reality animation object.

initialize Create and populate virtual reality animation
object.

nodeInfo Create list of nodes associated with virtual
reality animation object.

play Animate virtual reality world for given position
and angle in time series data.

removeNode Remove node from virtual reality animation
object.

removeViewpoint Remove viewpoint node from virtual reality
animation.

3-29

Aero.VirtualRealityAnimation

Method Description

saveas Save virtual reality world associated with
virtual reality animation object.

updateNodes Set new translation and rotation of moveable
items in virtual reality animation.

Notes on Aero.VirtualRealityAnimation Methods
Aero.VirtualRealityAnimation methods that change the current virtual
reality world use a temporary .wrl file to manage those changes. These
methods include:

• addNode

• removeNode

• addViewpoint

• removeViewpoint

• addRoute

Be aware of the following behavior:

• After the methods make the changes, they reinitialize the world,
using the information stored in the temporary .wrl file.

• When you delete the virtual reality animation object, this action
deletes the temporary file.

• Use the saveas method to save the temporary .wrl file.

• These methods do not affect user-created .wrl files.

3-30

Aero.VirtualRealityAnimation

Property
Summary

Property Description Values

Name Specify name of the animation
object.

string

VRWorld Returns the vrworld object
associated with the animation
object.

MATLAB array

VRWorldFilename Specify the .wrl file for the
vrworld.

string

VRWorldOldFilename Specify the old .wrl files for
the vrworld.

MATLAB array

VRWorldTempFilename Specify the temporary .wrl
file for the animation object.

string

VRFigure Returns the vrfigure object
associated with the animation
object.

MATLAB array

Nodes Specify the nodes that the
animation object contains.

MATLAB array

Viewpoints Specify the viewpoints that
the animation object contains.

MATLAB array

TimeScaling Specify the time scaling, in
seconds.

double

TStart Specify the recording start
time, in seconds.

double

TFinal Specify end time, in seconds. double

TCurrent Specify current time, in
seconds.

double

FramesPerSecond Specify rate, in frames per
second.

double

3-31

Aero.VirtualRealityAnimation

Property Description Values

ShowSaveWarning Specify save warning display
setting.

double

• 0 — No warning is
displayed.

• Non-zero — Warning is
displayed.

VideoFileName Specify video recording file
name.

string

VideoCompression Specify video recording
compression file type.
For more information on
video compression, see the
VideoWriter class.

• 'Archival'

Create Motion JPEG 2000
format file with lossless
compression.

• 'Motion JPEG AVI'

Create compressed AVI
format file using Motion
JPEG codec.

• 'Motion JPEG 2000'

Create compressed Motion
JPEG 2000 format file.

• 'MPEG-4'

Create compressedMPEG-4
format file with H.264
encoding (Windows 7
systems only).

• 'Uncompressed AVI'

Create uncompressed AVI
format file with RGB24
video.

3-32

Aero.VirtualRealityAnimation

Property Description Values

Aero.VideoProfileTypeEnum

Default: 'Archival'

VideoQuality Specify video recording
quality. For more information
on video quality, see the
Quality property of the
VideoWriter class.

Value between 0 and 100.

double

Default: 75

VideoRecord Enable video recording. • 'on'

Enable video recording.

• 'off'

Disable video recording.

• 'scheduled'

Schedule video recording.
Use this property with
the VideoTStart and
VideoTFinal properties.

string

Default: 'off'

3-33

Aero.VirtualRealityAnimation

Property Description Values

VideoTStart Specify video recording start
time for scheduled recording.

Value between TStart and
TFinal.

double

Default: NaN, which uses the
value of TStart.

VideoTFinal Specify video recording stop
time for scheduled recording.

Value between TStart and
TFinal.

double

Default: NaN, which uses the
value of TFinal.

Examples Record Virtual Reality Animation Object Simulation

Simulate and record flight data.

Create an animation object.

h = Aero.VirtualRealityAnimation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling property
determine the time step of the simulation. These settings result in a
time step of approximately 0.5 s.

This code sets the .wrl file to use in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

3-34

Aero.VirtualRealityAnimation

Copy the .wrl file to a temporary directory and set the world file name
to the copied .wrl file.

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Load the animation world described in the 'VRWorldFilename' field of
the animation object.

h.initialize();

Set simulation timeseries data. takeoffData.mat contains logged
simulated data. takeoffData is set up as a 'StructureWithTime',
which is one of the default data formats.

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Use the example custom function vranimCustomTransform to correctly
line up the position and rotation data with the surrounding objects in
the virtual world. This code sets the coordinate transformation function
for the virtual reality animation.

h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Set up recording properties.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG_VR';

Play the animation.

h.play();

3-35

Aero.VirtualRealityAnimation

Verify that a file named astMotion_JPEG_VR.avi was created in the
current folder.

Disable recording to preserve the file.

h.VideoRecord = 'off';

Record Virtual Reality Animation for Four Seconds

Simulate flight data for four seconds.

Create an animation object.

h = Aero.VirtualRealityAnimation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties
determines the time step of the simulation. These settings result in a
time step of approximately 0.5 s.

This code sets the .wrl file to use in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

Copy the .wrl file to a temporary directory and set the world file name
to the copied .wrl file.

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Load the animation world described in the 'VRWorldFilename' field of
the animation object.

3-36

Aero.VirtualRealityAnimation

h.initialize();

Set simulation timeseries data. takeoffData.mat contains logged
simulated data. takeoffData is set up as a 'StructureWithTime',
which is one of the default data formats.

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Use the example custom function vranimCustomTransform to correctly
line up the position and rotation data with the surrounding objects in
the virtual world. This code sets the coordinate transformation function
for the virtual reality animation.

h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Set up recording properties.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

Play the animation from TFinal to TStart.

h.TSTart = 1;
h.TFinal = 5;
h.play();

Verify that a file named astMotion_JPEG_VR.avi was created in the
current folder. When you rerun the recording, notice that the play time
is faster than when you record for the length of the simulation time.

Disable recording to preserve the file.

h.VideoRecord = 'off';

3-37

Aero.VirtualRealityAnimation

Schedule Three Second Recording of Simulation

Schedule three second recording of virtual reality object animation
simulation.

Create an animation object.

h = Aero.VirtualRealityAnimation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per
second time scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties
determines the time step of the simulation. These settings result in a
time step of approximately 0.5 s.

This code sets the .wrl file to use in the virtual reality animation.

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

Copy the .wrl file to a temporary directory and set the world file name
to the copied .wrl file.

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');
h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

Load the animation world described in the 'VRWorldFilename' field of
the animation object.

h.initialize();

Set simulation timeseries data. takeoffData.mat contains logged
simulated data. takeoffData is set up as a 'StructureWithTime',
which is one of the default data formats.

3-38

Aero.VirtualRealityAnimation

load takeoffData
[~, idxPlane] = find(strcmp('Plane', h.nodeInfo));
h.Nodes{idxPlane}.TimeseriesSource = takeoffData;
h.Nodes{idxPlane}.TimeseriesSourceType = 'StructureWithTime';

Use the example custom function vranimCustomTransform to correctly
line up the position and rotation data with the surrounding objects in
the virtual world. This code sets the coordinate transformation function
for the virtual reality animation.

h.Nodes{idxPlane}.CoordTransformFcn = @vranimCustomTransform;

Set up recording properties.

h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

Set up simulation time from TFinal to TStart.

h.TSTart = 1;
h.TFinal = 5;

Set up to record between two and four seconds of the four second
simulation.

h.VideoRecord='scheduled';
h.VideoTSTart = 2;
h.VideoTFinal = 4;

Play the animation.

h.play();

Verify that a file named astMotion_JPEG_VR.avi was created in the
current folder. When you rerun the recording, notice that the play time
is faster than when you record for the length of the simulation time.

Disable recording to preserve the file.

3-39

Aero.VirtualRealityAnimation

h.VideoRecord = 'off';

3-40

airspeed

Purpose Airspeed from velocity

Syntax airspeed = airspeed(velocities)

Description airspeed = airspeed(velocities) computes m airspeeds, airspeed,
from an m-by-3 array of velocities, velocities.

Examples Determine the airspeed for velocity one array:

as = airspeed([84.3905 33.7562 10.1269])

as =

91.4538

Determine the airspeed for velocity for multiple arrays:

as = airspeed([50 20 6; 5 0.5 2])

as =

54.1849
5.4083

See Also alphabeta | correctairspeed | dpressure | machnumber

3-41

alphabeta

Purpose Incidence and sideslip angles

Syntax [incidence sideslip] = alphabeta(velocities)

Description [incidence sideslip] = alphabeta(velocities) computes m
incidence and sideslip angles, incidence and sideslip , between the
velocity vector and the body. velocities is an m-by-3 array of velocities
in body axes. incidence and sideslip are in radians.

Examples Determine the incidence and sideslip angles for velocity for one array:

[alpha beta] = alphabeta([84.3905 33.7562 10.1269])

alpha =

0.1194

beta =

0.3780

Determine the incidence and sideslip angles for velocity for two arrays:

[alpha beta] = alphabeta([50 20 6; 5 0.5 2])

alpha =

0.1194
0.3805

beta =

0.3780
0.0926

3-42

alphabeta

See Also airspeed | machnumber

3-43

angle2dcm

Purpose Create direction cosine matrix from rotation angles

Syntax dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3)
dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3,

rotationSequence)

Description dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3)
calculates the direction cosine matrix given three sets of rotation angles.

dcm = angle2dcm(rotationAng1, rotationAng2, rotationAng3,
rotationSequence) calculates the direction cosine matrix using a
rotation sequence.

Input
Arguments

rotationAng1

m-by-1 array of first rotation angles, in radians.

rotationAng2

m-by-1 array of second rotation angles, in radians.

rotationAng3

m-by-1 array of third rotation angles, in radians.

rotationSequence

String that defines rotation sequence. For example, the default
'ZYX' represents a sequence where rotationAng1 is z-axis rotation,
rotationAng2 is y-axis rotation, and rotationAng3 is x-axis rotation.

'ZYX'
'ZYZ'
'ZXY'
'ZXZ'
'YXZ'
'YXY'
'YZX'
'YZY'

3-44

angle2dcm

'XYZ'
'XZY'
'XYX'
'XZX'
'ZYX' (default)

Output
Arguments

dcm

3-by-3-by-m matrix containing m direction cosine matrices.

Examples Determine the direction cosine matrix from rotation angles:

yaw = 0.7854;
pitch = 0.1;
roll = 0;
dcm = angle2dcm(yaw, pitch, roll)

dcm =

0.7036 0.7036 -0.0998
-0.7071 0.7071 0
0.0706 0.0706 0.9950

Determine the direction cosine matrix from rotation angles and rotation
sequence:

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];
dcm = angle2dcm(pitch, roll, yaw, 'YXZ')

dcm(:,:,1) =

0.7036 0.7071 -0.0706
-0.7036 0.7071 0.0706
0.0998 0 0.9950

3-45

angle2dcm

dcm(:,:,2) =

0.8525 0.4770 -0.2136
-0.4321 0.8732 0.2254
0.2940 -0.0998 0.9506

See Also angle2quat | dcm2angle | dcm2quat | quat2dcm | quat2angle

3-46

angle2quat

Purpose Convert rotation angles to quaternion

Syntax quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3)

quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3,rotationSequence)

Description quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3) calculates the quaternion for three rotation angles.

quaternion = angle2quat(rotationAng1,rotationAng2,
rotationAng3,rotationSequence) calculates the quaternion using
a rotation sequence.

Input
Arguments

rotationAng1

m-by-1 array of first rotation angles, in radians.

rotationAng2

m-by-1 array of second rotation angles, in radians.

rotationAng3

m-by-1 array of third rotation angles, in radians.

rotationSequence

String that defines rotation sequence. For example, the default
'ZYX' represents a sequence where rotationAng1 is z-axis rotation,
rotationAng2 is y-axis rotation, and rotationAng3 is x-axis rotation.

'ZYX'
'ZYZ'
'ZXY'
'ZXZ'
'YXZ'
'YXY'
'YZX'

3-47

angle2quat

'YZY'
'XYZ'
'XZY'
'XYX'
'XZX'
'ZYX' (default)

Output
Arguments

quaternion

m-by-4 matrix containing m quaternions. quaternion has its scalar
number as the first column.

Examples Determine the quaternion from rotation angles:

yaw = 0.7854;
pitch = 0.1;
roll = 0;
q = angle2quat(yaw, pitch, roll)
q =

0.9227 -0.0191 0.0462 0.3822

Determine the quaternion from rotation angles and rotation sequence:

yaw = [0.7854 0.5];
pitch = [0.1 0.3];
roll = [0 0.1];
q = angle2quat(pitch, roll, yaw, 'YXZ')
q =

0.9227 0.0191 0.0462 0.3822
0.9587 0.0848 0.1324 0.2371

See Also angle2dcm | dcm2angle | dcm2quat | quat2angle | quat2dcm

3-48

atmoscoesa

Purpose Use 1976 COESA model

Syntax [T, a, P, Rho] = atmoscoesa(height, action)

Description Committee on Extension to the Standard Atmosphere has the
acronym COESA. [T, a, P, Rho] = atmoscoesa(height, action)
implements the mathematical representation of the 1976 COESA
United States standard lower atmospheric values. These values are
absolute temperature, pressure, density, and speed of sound for the
input geopotential altitude.

Below the geopotential altitude of 0 m (0 feet) and above the
geopotential altitude of 84,852 m (approximately 278,386 feet), the
function extrapolates values. It extrapolates temperature values
linearly and pressure values logarithmically.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin.

a

Array of m-by-1 speeds of sound, in meters per second. The function
calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal.

3-49

atmoscoesa

Rho

Array of m-by-1 densities, in kilograms per meter cubed. The function
calculates density using a perfect gas relationship.

Examples Calculate the COESA model at 1000 m with warnings for out-of-range
inputs:

[T, a, P, rho] = atmoscoesa(1000)

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

Calculate the COESA model at 1000, 11,000, and 20,000 m with errors
for out-of-range inputs:

[T, a, P, rho] = atmoscoesa([1000 11000 20000], 'Error')

T =

281.6500 216.6500 216.6500

a =

3-50

atmoscoesa

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmosisa | atmoslapse | atmosnonstd | atmospalt

3-51

atmoscira

Purpose Use COSPAR International Reference Atmosphere 1986 model

Syntax [T altitude zonalWind] = atmoscira(latitude, ctype, coord,
mtype, month, action)

Description [T altitude zonalWind] = atmoscira(latitude, ctype, coord,
mtype, month, action) implements the mathematical representation
of the Committee on Space Research (COSPAR) International Reference
Atmosphere (CIRA) from 1986 model. The CIRA 1986 model provides
a mean climatology. The mean climatology consists of temperature,
zonal wind, and geopotential height or pressure. It encompasses nearly
pole-to-pole coverage (80 degrees S to 80 degrees N) for 0 km to 120 km.
This provision also encompasses the troposphere, middle atmosphere,
and lower thermosphere. Use this mathematical representation as a
function of pressure or geopotential height.

This function uses a corrected version of the CIRA data files provided
by J. Barnett in July 1990 in ASCII format.

This function has the limitations of the CIRA 1986 model and limits the
values for the CIRA 1986 model.

The CIRA 1986 model limits values to the regions of 80 degrees S to 80
degrees N on Earth. It also limits geopotential heights from 0 km to
120 km. In each monthly mean data set, the model omits values at 80
degrees S for 101,300 pascal or 0 m. It omits these values because these
levels are within the Antarctic land mass. For zonal mean pressure in
constant altitude coordinates, pressure data is not available below 20
km. Therefore, this value is the bottom level of the CIRA climatology.

Input
Arguments

latitude

Array of m geopotential heights, in meters.

ctype

String that defines representation of coordinate type. Specify:

3-52

atmoscira

'Pressure' Pressure in pascal

'GPHeight' Geopotential height in meters

coord

Depending on the value of ctype, this argument specifies one of the
following arrays:

m Pressures in pascal

m Geopotential height in meters

mtype

String that selects one of the following mean value types:

'Monthly'
(default)

Monthly values.

'Annual' Annual values. Valid when ctype has a value of
'Pressure'.

month

Scalar value that selects the month in which the model takes the
mean values. This argument applies only when mtype has a value of
'Monthly'.

1 (default) January

2 February

3 March

4 April

5 May

6 June

3-53

atmoscira

7 July

8 August

9 September

10 October

11 November

12 December

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

T

Array of temperatures:

If m is 'Monthly' Array of m temperatures, in kelvin

If mtype is 'Annual' Array of m-by-7 values:

• Annual mean temperature in kelvin

• Annual temperature cycle amplitude
in kelvin

• Annual temperature cycle phase in
month of maximum

• Semiannual temperature cycle
amplitude in kelvin

• Semiannual temperature cycle phase
in month of maximum

3-54

atmoscira

• Terannual temperature cycle
amplitude in kelvin

• Terannual temperature cycle phase in
month of maximum

altitude

If mtype is 'Monthly', an array of m geopotential heights or m air
pressures:

If ctype is 'Pressure' Array m geopotential heights

If ctype is 'GPHeight' Array m air pressure

If mtype is 'Annual', an array of m-by-7 values for geopotential heights.
The function defines this array only for the northern hemisphere
(latitude is greater than 0).

• Annual mean geopotential heights in meters

• Annual geopotential heights cycle amplitude in meters

• Annual geopotential heights cycle phase in month of maximum

• Semiannual geopotential heights cycle amplitude in meters

• Semiannual geopotential heights cycle phase in month of maximum

• Terannual geopotential heights cycle amplitude in meters

• Terannual geopotential heights cycle phase in month of maximum

zonalWind

Array of zonal winds:

3-55

atmoscira

If mtype is 'Monthly' Array in meters per second.

If mtype is 'Annual' Array of m-by-7 values:

• Annual mean zonal winds in meters
per second

• Annual zonal winds cycle amplitude in
meters per second

• Annual zonal winds cycle phase in
month of maximum

• Semiannual zonal winds cycle
amplitude in meters per second

• Semiannual zonal winds cycle phase in
month of maximum

• Terannual zonal winds cycle amplitude
in meters per second

• Terannual zonal winds cycle phase in
month of maximum

Examples Using the CIRA 1986 model at 45 degrees latitude and 101,300 pascal
for January with out-of-range actions generating warnings, calculate
the mean monthly values. Calculate values for temperature (T),
geopotential height (alt), and zonal wind (zwind).

[T alt zwind] = atmoscira(45, 'Pressure', 101300)
T =

280.6000
alt =

-18
zwind =

3.3000

3-56

atmoscira

Using the CIRA 1986 model at 45 degrees latitude and 20,000 m for
October with out-of-range actions generating warnings, calculate the
mean monthly values. Calculate values for temperature (T), pressure
(pres), and zonal wind (zwind).

[T pres zwind] = atmoscira(45, 'GPHeight', 20000, 'Monthly', 10)

T =

215.8500

pres =

5.5227e+003

zwind =

9.5000

Use the CIRA 1986 model at 45 and –30 degrees latitude and 20,000
m for October with out-of-range actions generating errors. Calculate
values for temperature (T), pressure (pres), and zonal wind (zwind).

[T pres zwind] = atmoscira([45 -30], 'GPHeight', 20000, 10, 'error')

T =

215.8500 213.9000

pres =

1.0e+003 *

5.5227 5.6550

zwind =

9.5000 4.3000

For September, with out-of-range actions generating warnings, use
the CIRA 1986 model at 45 degrees latitude and –30 degrees latitude.
Also use the model at 2000 pascal and 101,300 pascal. Calculate mean
monthly values for temperature (T), geopotential height (alt), and
zonal wind (zwind).

[T alt zwind] = atmoscira([45 -30], 'Pressure', [2000 101300], 9)

T =

223.5395 290.9000

3-57

atmoscira

alt =

1.0e+004 *

2.6692 0.0058

zwind =

0.6300 -1.1000

Using the CIRA 1986 model at 45 degrees latitude and 2000 pascal
with out-of-range actions generating warnings, calculate annual values.
Calculate values for temperature (T), geopotential height (alt), and
zonal wind (zwind).

[T alt zwind] = atmoscira(45, 'Pressure', 2000, 'Annual')

T =

221.9596 5.0998 6.5300 1.9499 1.3000 1.0499 1.3000

alt =

1.0e+004 *

2.6465 0.0417 0.0007 0.0087 0.0001 0.0015 0.0002

zwind =

4.6099 14.7496 0.6000 1.6499 4.6000 0.5300 1.4000

References Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly
Mean Global Climatology of Temperature, Wind, Geopotential Height
and Pressure for 0-120 km, NASA TM100697, February 1988

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

See Also atmoscoesa | atmosisa | atmoslapse | atmosnonstd |
atmosnrlmsise00 | atmospalt

3-58

http://modelweb.gsfc.nasa.gov/atmos/cospar1.html

atmosisa

Purpose Use International Standard Atmosphere model

Syntax [T, a, P, rho] = atmosisa(height)

Description [T, a, P, rho] = atmosisa(height) implements the mathematical
representation of the International Standard Atmosphere values for
ambient temperature, pressure, density, and speed of sound for the
input geopotential altitude.

This function assumes that below the geopotential altitude of 0 km and
above the geopotential altitude of the tropopause, temperature and
pressure values are held.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

Output
Arguments

T

Array of m temperatures, in kelvin.

a

Array of m speeds of sound, in meters per second. The function calculates
speed of sound using a perfect gas relationship.

rho

Array of m densities, in kilograms per meter cubed. The function
calculates density using a perfect gas relationship.

P

Array of m pressures, in pascal.

Examples Calculate the International Standard Atmosphere at 1000 m:

[T, a, P, rho] = atmosisa(1000)

3-59

atmosisa

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

1.1116

Calculate the International Standard Atmosphere at 1000, 11,000,
and 20,000 m:

[T, a, P, rho] = atmosisa([1000 11000 20000])

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

3-60

atmosisa

1.1116 0.3639 0.0880

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmoslapse | atmosnonstd | atmospalt

3-61

atmoslapse

Purpose Use Lapse Rate Atmosphere model

Syntax [T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0)

[T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0,
height0)

Description [T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0)
implements the mathematical representation of the lapse rate
atmospheric equations for ambient temperature, pressure, density, and
speed of sound for the input geopotential altitude. To customize this
atmospheric model, specify the atmospheric properties in the function
input.

The function holds temperature and pressure values below the
geopotential altitude of 0 km and above the geopotential altitude of the
tropopause. The function calculates the density and speed of sound
using a perfect gas relationship.

[T, a, P, rho] = atmoslapse(height, g, heatRatio,
characteristicGasConstant, lapseRate, heightTroposphere,
heightTropopause, density0, pressure0, temperature0,
height0) indicates that the values for ambient temperature, pressure,
density, and speed of sound are for below mean sea level geopotential
altitudes.

The function holds temperature and pressure values below the
geopotential altitude of height0 and above the geopotential altitude of
the tropopause. The function calculates the density and speed of sound
using a perfect gas relationship.

3-62

atmoslapse

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

g

Scalar of acceleration due to gravity, in meters per second squared.

heatRatio

Scalar of specific heat ratio.

characteristicGasConstant

Scalar of characteristic gas constant, in joule per kilogram-kelvin.

lapseRate

Scalar of lapse rate, in kelvin per meter.

heightTroposphere

Scalar of height of troposphere, in meters.

heightTropopause

Scalar of height of tropopause, in meters.

density0

Scalar of air density at mean sea level, in kilograms per meter cubed.

pressure0

Scalar of static pressure at mean sea level, in pascal.

temperature0

Scalar of absolute temperature at mean sea level, in kelvin.

height0

3-63

atmoslapse

Scalar of minimum sea level altitude, in meters.

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin.

a

Array of m-by-1 speeds of sound, in meters per second. The function
calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal.

rho

Array of m-by-1 densities, in kilograms per meter cubed. The function
calculates density using a perfect gas relationship.

Examples Calculate the atmosphere at 1000 m with the International Standard
Atmosphere input values:

[T, a, P, rho] = atmoslapse(1000, 9.80665, 1.4, 287.0531, 0.0065, ...

11000, 20000, 1.225, 101325, 288.15)

T =

281.6500

a =

336.4341

P =

8.9875e+004

rho =

3-64

atmoslapse

1.1116

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmosnonstd | atmospalt

3-65

atmosnonstd

Purpose Use climatic data from MIL-STD-210 or MIL-HDBK-310

Syntax [T, a, P, rho] = atmosnonstd(height, atmosphericType,
extremeParameter, frequency, extremeAltitude, action,
specification)

Description [T, a, P, rho] = atmosnonstd(height, atmosphericType,
extremeParameter, frequency, extremeAltitude, action,
specification) implements a portion of the climatic data of the
MIL-STD-210C or MIL-HDBK-310 worldwide air environment to
80 km geometric (or approximately 262,000 feet geometric). This
implementation provides absolute temperature, pressure, density, and
speed of sound for the input geopotential altitude.

This function holds all values below the geometric altitude of 0 m (0
feet) and above the geometric altitude of 80,000 m (approximately
262,000 feet). The envelope atmospheric model has exceptions where
values are held below the geometric altitude of 1 km (approximately
3281 feet). It also has exceptions above the geometric altitude of 30,000
m (approximately 98,425 feet). These exceptions are due to lack of data
in MIL-STD-210 or MIL-HDBK-310 for these conditions.

In general, this function interpolates temperature values linearly and
density values logarithmically. It calculates pressure and speed of
sound using a perfect gas relationship. The envelope atmospheric model
has exceptions where the extreme value is the only value provided
as an output. In these cases, the function interpolates pressure
logarithmically. These envelope atmospheric model exceptions apply
to all cases of high and low pressure, high and low temperature, and
high and low density. These exceptions exclude the extreme values and
1% frequency of occurrence. These exceptions are due to lack of data in
MIL-STD-210 or MIL-HDBK-310 for these conditions.

A limitation is that MIL-STD-210 and MIL-HDBK-310 exclude from
consideration climatic data for the region south of 60 degrees S latitude.

This function uses the metric version of data from the MIL-STD-210
or MIL-HDBK-310 specifications. A limitation is some inconsistent
data between the metric and English data. Locations where these

3-66

atmosnonstd

inconsistencies occur are within the envelope data for low density, low
temperature, high temperature, low pressure, and high pressure. The
most noticeable differences occur in the following values:

• For low density envelope data with 5% frequency, the density values
in metric units are inconsistent at 4 km and 18 km. In addition, the
density values in English units are inconsistent at 14 km.

• For low density envelope data with 10% frequency, the density values
in metric units are inconsistent at 18 km. In addition, the density
values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values
in English units are inconsistent at 14 km.

• For high-pressure envelope data with 10% frequency, the pressure
values at 8 km are inconsistent.

Input
Arguments

height

Array of m-by-1 geopotential heights, in meters.

atmosphericType

String selecting the representation of 'Profile' or 'Envelope' for
the atmospheric data:

'Profile' Is the realistic atmospheric profiles associated with
extremes at specified altitudes. Use 'Profile'
for simulation of vehicles vertically traversing the
atmosphere, or when you need the total influence of
the atmosphere.

'Envelope' Uses extreme atmospheric values at each altitude.
Use 'Envelope' for vehicles traversing the
atmosphere horizontally, without much change in
altitude.

extremeParameter

3-67

atmosnonstd

String selecting the atmospheric parameter that is the extreme value.
Atmospheric parameters that you can specify are:

'High temperature'
'Low temperature'
'High density'
'Low density'
'High pressure', available only if atmosphericType is 'Envelope'
'Low pressure', available only if atmosphericType is 'Envelope'

frequency

String selecting percent of time that extreme values would occur. When
using atmosphericType of 'Envelope' and frequency of '5%', '10%’,
and '20%', only the extreme* parameter that you specify (temperature,
density, or pressure) has a valid output. All other parameter outputs
are zero.

'Extreme values', available only if atmosphericType is
'Envelope'
'1%'
'5%', available only if atmosphericType is 'Envelope'
'10%
'20%', available only if atmosphericType is 'Envelope'

extremeAltitude

Scalar value, in kilometers, selecting geometric altitude at which
the extreme values occur. extremeAltitude applies only when
atmosphericType is 'Profile'.

5 16404 ft

10 32808 ft

20 65617 ft

30 98425 ft

40 131234 ft

3-68

atmosnonstd

action

String that defines action for out-of-range input:

'Error'
'Warning' (default)
'None'

specification

String specifying the atmosphere model:

'210c' MIL-STD-210C

'310' MIL-HDBK-310 (default)

Output
Arguments

T

Array of m-by-1 temperatures, in kelvin. This function interpolates
temperature values linearly.

a

Array of m-by-1 speeds of sound, in meters per second. This function
calculates speed of sound using a perfect gas relationship.

P

Array of m-by-1 pressures, in pascal. This function calculates pressure
using a perfect gas relationship.

rho

Array of m-by-1 densities, in kilograms per meter cubed. This function
interpolates density values logarithmically.

Examples Calculate the nonstandard atmosphere profile. Use high density
occurring 1% of the time at 5 km from MIL-HDBK-310 at 1000 m with
warnings for out-of-range inputs:

3-69

atmosnonstd

[T, a, P, rho] = atmosnonstd(1000,'Profile','High density','1%',5)

T =

248.1455

a =

315.7900

P =

8.9893e+004

rho =

1.2620

Calculate the nonstandard atmosphere envelope with high pressure.
Assume that high pressure occurs 20% of the time from MIL-STD-210C
at 1000, 11,000, and 20,000 m with errors for out-of-range inputs:

[T, a, P, rho] = atmosnonstd([1000 11000 20000],'Envelope', ...

'High pressure','20%','Error','210c')

T =

0 0 0

a =

0 0 0

P =

1.0e+004 *

3-70

atmosnonstd

9.1598 2.5309 0.6129

rho =

0 0 0

References Global Climatic Data for DevelopingMilitary Products (MIL-STD-210C),
9 January 1987, Department of Defense, Washington, D.C.

Global Climatic Data for Developing Military Products
(MIL-HDBK-310), 23 June 1997, Department of Defense, Washington,
D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmoslapse | atmospalt

3-71

atmosnrlmsise00

Purpose Implement mathematical representation of 2001 United States Naval
Research Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere

Syntax [T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, localApparentSolarTime)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, f107Average, f107Daily,
magneticIndex)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, flags)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, otype)

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, action)

Description [T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds) implements the mathematical
representation of the 2001 United States Naval Research Laboratory
Mass Spectrometer and Incoherent Scatter Radar Exosphere
(NRLMSISE-00). NRLMSISE-00 calculates the neutral atmosphere
empirical model from the surface to lower exosphere (0 m to 1,000,000
m). Optionally, it performs this calculation including contributions from
anomalous oxygen that can affect satellite drag above 500,000 m.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, localApparentSolarTime) specifies
an array of m local apparent solar time (hours).

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, f107Average, f107Daily,
magneticIndex) specifies arrays of m 81 day average of F10.7 flux
(centered on doy), m-by-1 daily F10.7 flux for previous day, and m-by-7 of
magnetic index information.

3-72

atmosnrlmsise00

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, flags) specifies an array of 23 to
enable or disable particular variations for the outputs.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, otype) specifies a string for total
mass density output.

[T rho] = atmosnrlmsise00(altitude, latitude, longitude,
year, dayOfYear, UTseconds, action) specifies out-of-range input
action.

This function has the limitations of the NRLMSISE-00 model. For more
information, see the NRLMSISE-00 model documentation.

The NRLMSISE-00 model uses UTseconds, localApparentSolarTime,
and longitude independently. These arguments are not of equal
importance for every situation. For the most physically realistic
calculation, choose these three variables to be consistent by default:

localApparentSolarTime = UTseconds/3600 + longitude/15

If available, you can include departures from this equation for
localApparentSolarTime, but they are of minor importance.

Input
Arguments

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

altitude

Array of m-by-1 altitudes, in meters.

dayOfYear

Array m-by-1 day of year.

3-73

atmosnrlmsise00

f107Average

Array of m-by-1 81 day average of F10.7 flux (centered on day of
year (dayOfYear)). If you specifyf107Average, you must also specify
f107Daily and magneticIndex. The effects of f107Average are not
large or established below 80,000 m; therefore, the default value is 150.

These f107Average values correspond to the 10.7 cm radio
flux at the actual distance of the Earth from the Sun. The
f107Average values do not correspond to the radio flux at
1 AU. The following site provides both classes of values:
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

See the limitations in “Description” on page 3-72 for more information.

f107Daily

Array of m-by-1 daily F10.7 flux for previous day. If you specify
f107Daily, you must also specify f107Average and magneticIndex.
The effects of f107Daily are not large or established below 80,000 m;
therefore, the default value is 150.

These f107Daily values correspond to the 10.7 cm radio
flux at the actual distance of the Earth from the Sun. The
f107Daily values do not correspond to the radio flux at
1 AU. The following site provides both classes of values:
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

See the limitations in “Description” on page 3-72 for more information.

flags

Array of 23 to enable or disable particular variations for the outputs.
If flags array length, m, is 23 and you have not specified all available
inputs, this function assumes that flags is set.

The flags, associated with the flags input, enable or disable particular
variations for the outputs:

3-74

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

atmosnrlmsise00

Field Description

Flags(1) F10.7 effect on mean

Flags(2) Independent of time

Flags(3) Symmetrical annual

Flags(4) Symmetrical semiannual

Flags(5) Asymmetrical annual

Flags(6) Asymmetrical semiannual

Flags(7) Diurnal

Flags(8) Semidiurnal

Flags(9) Daily AP. If you set this field to -1, the block uses the
entire matrix of magnetic index information (APH)
instead of APH(:,1).

Flags(10) All UT, longitudinal effects

Flags(11) Longitudinal

Flags(12) UT and mixed UT, longitudinal

Flags(13) Mixed AP, UT, longitudinal

Flags(14) Terdiurnal

Flags(15) Departures from diffusive equilibrium

Flags(16) All exospheric temperature variations

Flags(17) All variations from 120,000 meter temperature (TLB)

Flags(18) All lower thermosphere (TN1) temperature variations

Flags(19) All 120,000 meter gradient (S) variations

Flags(20) All upper stratosphere (TN2) temperature variations

Flags(21) All variations from 120,000 meter values (ZLB)

Flags(22) All lower mesosphere temperature (TN3) variations

Flags(23) Turbopause scale height variations

3-75

atmosnrlmsise00

latitude

Array of m-by-1 geodetic latitudes, in meters.

longitude

Array of m-by-1 longitudes, in degrees.

localApparentSolarTime

Array of m-by-1 local apparent solar time (hours). To obtain a
physically realistic value, the function sets localApparentSolarTime
to (sec/3600 + lon/15) by default. See “Description” on page 3-72
for more information.

magneticIndex

An array of m-by-7 of magnetic index information. If you specify
magneticIndex, you must also specify f107Average and f107Daily.
This information consists of:

Daily magnetic index (AP)
3 hour AP for current time
3 hour AP for 3 hours before current time
3 hour AP for 6 hours before current time
3 hour AP for 9 hours before current time
Average of eight 3 hour AP indices from 12 to 33 hours before current
time
Average of eight 3 hour AP indices from 36 to 57 hours before current
time

The effects of daily magnetic index are not large or established below
80,000 m. As a result, the function sets the default value to 4. See the
limitations in “Description” on page 3-72 for more information.

otype

String for total mass density output:

3-76

atmosnrlmsise00

`Oxygen' Total mass density outputs include anomalous
oxygen number density.

`NoOxygen' Total mass density outputs do not include anomalous
oxygen number density.

UTseconds

Array of m-by-1 seconds in day in universal time (UT)

year

This function ignores the value of year.

Output
Arguments

T

Array of N-by-2 values of temperature, in kelvin. The first column is
exospheric temperature, in kelvin. The second column is temperature
at altitude, in kelvin.

rho

An array of N-by-9 values of densities (kg/m3 or 1/m3) in selected density
units. The column order is:

Density of He, in 1/m3

Density of O, in 1/m3

Density of N2, in 1/m3

Density of O2, in 1/m3

Density of Ar, in 1/m3

Total mass density, in 1/kg3

Density of H, in 1/m3

Density of N, in 1/m3

Anomalous oxygen number density, in 1/m3

density(6), total mass density, is the sum of the mass densities of
He, O, N2, O2, Ar, H, and N. Optionally, density(6) can include the
mass density of anomalous oxygen making density(6), the effective
total mass density for drag.

3-77

atmosnrlmsise00

Examples Calculate the temperatures, densities not including anomalous oxygen
using the NRLMSISE-00 model at 10,000 m, 45 degrees latitude, -50
degrees longitude. This calculation uses the date January 4, 2007 at 0
UT. It uses default values for flux, magnetic index data, and local solar
time with out-of-range actions generating warnings:

[T rho] = atmosnrlmsise00(10000, 45, -50, 2007, 4, 0)

T =

281.6500 216.6500 216.6500

a =

336.4341 295.0696 295.0696

P =

1.0e+004 *

8.9875 2.2632 0.5475

rho =

1.1116 0.3639 0.0880

>> [T rho] = atmosnrlmsise00(10000, 45, -50, 2007, 4, 0)

T =

1.0e+003 *

1.0273 0.2212

rho =

1.0e+024 *

3-78

atmosnrlmsise00

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

Calculate the temperatures, densities not including anomalous oxygen
using the NRLMSISE-00 model. Use the model at 10,000 m, 45 degrees
latitude, –50 degrees longitude and 25,000 m, 47 degrees latitude, –55
degrees longitude.

This calculation uses the date January 4, 2007 at 0 UT. It uses
default values for flux, magnetic index data, and local solar time with
out-of-range actions generating warnings:

[T rho] = atmosnrlmsise00([10000; 25000], [45; 47], ...

[-50; -55], [2007; 2007], [4; 4], [0; 0])

[-50; -55], [2007; 2007], [4; 4], [0; 0])

T =

1.0e+003 *

1.0273 0.2212

1.0273 0.2116

rho =

1.0e+024 *

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

0.0000 0 0.6347 0.1703 0.0076 0.0000 0 0 0

Calculate the temperatures, densities including anomalous oxygen
using the NRLMSISE-00 model at 10,000 m, 45 degrees latitude, –50
degrees longitude. This calculation uses the date January 4, 2007 at 0

3-79

atmosnrlmsise00

UT. It uses default values for flux, magnetic index data, and local solar
time with out-of-range actions generating errors:

[T rho] = atmosnrlmsise00(10000, 45, -50, 2007, ...

4, 0, 'Oxygen', 'Error')

T =

1.0e+003 *

1.0273 0.2212

rho =

1.0e+024 *

0.0000 0 6.6824 1.7927 0.0799 0.0000 0 0 0

Calculate the temperatures, densities including anomalous oxygen
using the NRLMSISE-00 model at 100,000 m, 45 degrees latitude, –50
degrees longitude. This calculation uses the date January 4, 2007 at
0 UT. It uses defined values for flux, and magnetic index data, and
default local solar time. It specifies that the out-of-range action is to
generate no message:

aph = [17.375 15 20 15 27 (32+22+15+22+9+18+12+15)/8 (39+27+9+32+39+9+7+12)/8]

f107 = 87.7

nov_6days = [78.6 78.2 82.4 85.5 85.0 84.1]

dec_31daymean = 84.5

jan_31daymean = 83.5

feb_13days = [89.9 90.3 87.3 83.7 83.0 81.9 82.0 78.4 76.7 75.9 74.7 73.6 72.7]

f107a = (sum(nov_6days) + sum(feb_13days) + (dec_31daymean + jan_31daymean)*31)/81

flags = ones(1,23)

flags(9) = -1

[T rho] = atmosnrlmsise00(100000, 45, -50, 2007, 4, 0, f107a, f107, ...

3-80

atmosnrlmsise00

aph, flags, 'Oxygen', 'None')

aph =

17.3750 15.0000 20.0000 15.0000 27.0000 18.1250 21.7500

f107 =

87.7000

nov_6days =

78.6000 78.2000 82.4000 85.5000 85.0000 84.1000

dec_31daymean =

84.5000

jan_31daymean =

83.5000

feb_13days =

Columns 1 through 10

89.9000 90.3000 87.3000 83.7000 83.0000 81.9000 82.0000 78.4000 76.7000 75.9000

Columns 11 through 13

74.7000 73.6000 72.7000

3-81

atmosnrlmsise00

f107a =

83.3568

flags =

Columns 1 through 17

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Columns 18 through 23

1 1 1 1 1 1

flags =

Columns 1 through 17

1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1

Columns 18 through 23

1 1 1 1 1 1

T =

1.0e+003 *

1.0273 0.1917

rho =

1.0e+018 *

3-82

atmosnrlmsise00

0.0001 0.4241 7.8432 1.9721 0.0808 0.0000 0.0000 0.0000 0.0000

References http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html

See Also atmoscira

3-83

http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html

atmospalt

Purpose Calculate pressure altitude based on ambient pressure

Syntax pressureAltitude = atmospalt(pressure, action)

Description pressureAltitude = atmospalt(pressure, action) computes the
pressure altitude based on ambient pressure. Pressure altitude is
the altitude with specified ambient pressure in the 1976 Committee
on Extension to the Standard Atmosphere (COESA) United States
standard. Pressure altitude is the same as the mean sea level (MSL)
altitude.

This function extrapolates altitude values logarithmically below the
pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
pressure of 101,325 Pa (approximately 14.7 psi).

This function assumes that air is dry and an ideal gas.

Input
Arguments

pressure

Array of m-by-1 ambient pressures, in pascal.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning' (default)
'None'

Output
Arguments

pressureAltitude

Array of m-by-1 pressure altitudes or MSL altitudes, in meters.

Examples Calculate the pressure altitude at a static pressure of 101,325 Pa with
warnings for out-of-range inputs:

h = atmospalt(101325)

3-84

atmospalt

h =

0

Calculate the pressure altitude at static pressures of 101,325 Pa and
26,436 Pa with errors for out-of-range inputs:

h = atmospalt([101325 26436], 'Error')

h =

1.0e+004 *

0 1.0000

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also atmoscira | atmoscoesa | atmosisa | atmoslapse | atmosnonstd

3-85

Body (Aero.Body)

Purpose Construct body object for use with animation object

Syntax h = Aero.Body

Description h = Aero.Body constructs a body for an animation object. The
animation object is returned in h. To use the Aero.Body object, you
typically:

1 Create the animation body.

2 Configure or customize the body object.

3 Load the body.

4 Generate patches for the body (requires an axes from a figure).

5 Set the source for the time series data.

6 Move or update the body.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body
coordinates for the body geometry and the time series data. Convert
time series data from other coordinate systems on the fly by registering
a different CoordTransformFcn function.

See Aero.Body for further details.

See Also Aero.Body

3-86

Camera (Aero.Camera)

Purpose Construct camera object for use with animation object

Syntax h = Aero.Camera

Description h = Aero.Camera constructs a camera object h for use with an
animation object. The camera object uses the registered coordinate
transform. By default, this is an aerospace body coordinate system.
Axes of custom coordinate systems must be orthogonal.

The animation object has the following properties:

By default, an Aero.Body object natively uses aerospace body
coordinates for the body geometry and the time series data. Convert
time series data from other coordinate systems on the fly by registering
a different CoordTransformFcn function.

See Aero.Camera for further details.

See Also Aero.Camera

3-87

ClearTimer (Aero.FlightGearAnimation)

Purpose Clear and delete timer for animation of FlightGear flight simulator

Syntax ClearTimer(h)
h.ClearTimer

Description ClearTimer(h) and h.ClearTimer clear and delete the MATLAB timer
for the animation of the FlightGear flight simulator.

Examples Clear and delete the MATLAB timer for animation of the FlightGear
animation object, h:

h = Aero.FlightGearAnimation
h.SetTimer
h.ClearTimer
h.SetTimer('FGTimer')

See Also SetTimer

3-88

convacc

Purpose Convert from acceleration units to desired acceleration units

Syntax convertedValues = convacc(valuesToConvert, inputAccelUnits,
outputAccelUnits)

Description convertedValues = convacc(valuesToConvert, inputAccelUnits,
outputAccelUnits) computes the conversion factor from specified
input acceleration units to specified output acceleration units. It then
applies the conversion factor to the input to produce the output in the
desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to convert.
All values must have the same unit conversions from inputAccelUnits
to outputAccelUnits.

inputAccelUnits

Specified input acceleration units, as strings. Supported unit strings
are:

'ft/s^2' Feet per second squared

'm/s^2' Meters per second squared

'km/s^2' Kilometers per second squared

'in/s^2' Inches per second squared

'km/h-s' Kilometers per hour per second

'mph/s' Miles per hour per second

'G''s' g-units

outputAccelUnits

Specified output acceleration units, as strings. Supported unit strings
are:

3-89

convacc

'ft/s^2' Feet per second squared

'm/s^2' Meters per second squared

'km/s^2' Kilometers per second squared

'in/s^2' Inches per second squared

'km/h-s' Kilometers per hour per second

'mph/s' Miles per hour per second

'G''s' g-units

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three accelerations from feet per second squared to meters
per second squared:

a = convacc([3 10 20],'ft/s^2','m/s^2')

a =

0.9144 3.0480 6.0960

See Also convang | convangacc | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

3-90

convang

Purpose Convert from angle units to desired angle units

Syntax convertedValues = convang(valuesToConvert, inputAngleUnits,
outputAngleUnits)

Description convertedValues = convang(valuesToConvert, inputAngleUnits,
outputAngleUnits) computes the conversion factor from specified
input angle units to specified output angle units. It then applies the
conversion factor to the input to produce the output in the desired units.
inputAngleUnits and outputAngleUnits are strings.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values the function is to convert. All
values must have the same unit conversions from inputAngleUnits to
outputAngleUnits.

inputAngleUnits

Specified input angle units, as strings. Supported unit strings are:

'deg' Degrees

'rad' Radians

'rev' Revolutions

outputAngleUnits

Specified output angle units, as strings. Supported unit strings are:

'deg' Degrees

'rad' Radians

'rev' Revolutions

3-91

convang

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angles from degrees to radians:

a = convang([3 10 20],'deg','rad')

a =

0.0524 0.1745 0.3491

See Also convacc | convangacc | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

3-92

convangacc

Purpose Convert from angular acceleration units to desired angular acceleration
units

Syntax convertedValues = convangacc(valuesToConvert,
inputAngularUnits, outputAngularUnits)

Description convertedValues = convangacc(valuesToConvert,
inputAngularUnits, outputAngularUnits) computes the conversion
factor from specified input angular acceleration units to specified output
angular acceleration units. It then applies the conversion factor to the
input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputAngularUnits to outputAngularUnits.

inputAngularUnits

Specified input angular acceleration units, as strings. Supported unit
strings are:

'deg/s^2' Degrees per second squared

'rad/s^2' Radians per second squared

'rpm/s' Revolutions per minute per second

outputAngularUnits

Specified output angular acceleration units, as strings. Supported unit
strings are:

'deg/s^2' Degrees per second squared

'rad/s^2' Radians per second squared

'rpm/s' Revolutions per minute per second

3-93

convangacc

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angular accelerations from degrees per second squared to
radians per second squared:

a = convangacc([0.3 0.1 0.5],'deg/s^2','rad/s^2')

a =

0.0052 0.0017 0.0087

See Also convacc | convang | convangvel | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

3-94

convangvel

Purpose Convert from angular velocity units to desired angular velocity units

Syntax convertedValues = convangvel(valuesToConvert,
inputAngularVelocityUnits, outputAngularVelocityUnits)

Description convertedValues = convangvel(valuesToConvert,
inputAngularVelocityUnits, outputAngularVelocityUnits)
computes the conversion factor from specified input angular velocity
units to specified output angular velocity units. It then applies the
conversion factor to the input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputAngularVelocityUnits to outputAngularVelocityUnits.

inputAngularVelocityUnits

Specified input angular velocity units, as strings. Supported unit
strings are:

'deg/s' Degrees per second

'rad/s' Radians per second

'rpm' Revolutions per minute

outputAngularVelocityUnits

Specified output angular velocity units, as strings. Supported unit
strings are:

'deg/s' Degrees per second

'rad/s' Radians per second

'rpm' Revolutions per minute

3-95

convangvel

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three angular velocities from degrees per second to radians
per second:

a = convangvel([0.3 0.1 0.5],'deg/s','rad/s')

a =

0.0052 0.0017 0.0087

See Also convacc | convang | convangacc | convdensity | convforce |
convlength | convmass | convpres | convtemp | convvel

3-96

convdensity

Purpose Convert from density units to desired density units

Syntax convertedValues = convdensity(valuesToConvert,
inputDensityUnits, outputDensityUnits)

Description convertedValues = convdensity(valuesToConvert,
inputDensityUnits, outputDensityUnits) computes the conversion
factor from specified input density units to specified output density
units. It then applies the conversion factor to the input to produce the
output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputDensityUnits to outputDensityUnits.

inputDensityUnits

Specified input density units, as strings. Supported unit strings are:

'lbm/ft^3' Pound mass per feet cubed

'kg/m^3' Kilograms per meters cubed

'slug/ft^3' Slugs per feet cubed

'lbm/in^3' Pound mass per inch cubed

outputDensityUnits

Specified output density units, as strings. Supported unit strings are:

'lbm/ft^3' Pound mass per feet cubed

'kg/m^3' Kilograms per meters cubed

'slug/ft^3' Slugs per feet cubed

'lbm/in^3' Pound mass per inch cubed

3-97

convdensity

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three densities from pound mass per feet cubed to kilograms
per meters cubed:

a = convdensity([0.3 0.1 0.5],'lbm/ft^3','kg/m^3')

a =

4.8055 1.6018 8.0092

See Also convacc | convang | convangacc | convangvel | convforce |
convlength | convmass | convpres | convtemp | convvel

3-98

convforce

Purpose Convert from force units to desired force units

Syntax convertedValues = convforce(valuesToConvert,
inputForceUnits,

outputForceUnits)

Description convertedValues = convforce(valuesToConvert,
inputForceUnits, outputForceUnits) computes the
conversion factor from specified input force units to specified output
force units. It then applies the conversion factor to the input to produce
the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to convert.
All values must have the same unit conversions from inputForceUnits
to outputForceUnits.

inputForceUnits

Specified input force units, as strings. Supported unit strings are:

'lbf' Pound force

'N' Newton

outputForceUnits

Specified output force units, as strings. Supported unit strings are:

'lbf' Pound force

'N' Newton

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

3-99

convforce

Examples Convert three forces from pound force to newtons:

a = convforce([120 1 5],'lbf','N')

a =

533.7866 4.4482 22.2411

See Also convacc | convang | convangacc | convangvel | convdensity |
convlength | convmass | convpres | convtemp | convvel

3-100

convlength

Purpose Convert from length units to desired length units

Syntax convertedValues = convlength(valuesToConvert,
inputLengthUnits, outputLengthUnits)

m

Description convertedValues = convlength(valuesToConvert,
inputLengthUnits, outputLengthUnits) computes the conversion
factor from specified input length units to specified output length units.
It then applies the conversion factor to the input to produce the output
in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputLengthUnits to outputLengthUnits.

inputLengthUnits

Specified input length units, as strings. Supported unit strings are:

'ft' Feet

'm' Meters

'km' Kilometers

'in' Inches

'mi' Miles

'naut mi' Nautical miles

outputLengthUnits

Specified output length units, as strings. Supported unit strings are:

3-101

convlength

'ft' Feet

'm' Meters

'km' Kilometers

'in' Inches

'mi' Miles

'naut mi' Nautical miles

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three lengths from feet to meters:

a = convlength([3 10 20],'ft','m')

a =

0.9144 3.0480 6.0960

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convmass | convpres | convtemp | convvel

3-102

convmass

Purpose Convert from mass units to desired mass units

Syntax convertedValues = convmass(valuesToConvert, inputMassUnits,
outputMassUnits)

Description convertedValues = convmass(valuesToConvert, inputMassUnits,
outputMassUnits) computes the conversion factor from specified
input mass units to specified output mass units. It then applies the
conversion factor to the input to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to convert.
All values must have the same unit conversions from inputMassUnits
to outputMassUnits.

inputMassUnits

Specified input mass units, as strings. Supported unit strings are:

'lbm' Pound mass

'kg' Kilograms

'slugs' Slugs

outputMassUnits

Specified output mass units, as strings. Supported unit strings are:

'lbm' Pound mass

'kg' Kilograms

'slugs' Slugs

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

3-103

convmass

Examples Convert three masses from pound mass to kilograms:

a = convmass([3 1 5],'lbm','kg')

a =

1.3608 0.4536 2.2680

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convpres | convtemp | convvel

3-104

convpres

Purpose Convert from pressure units to desired pressure units

Syntax convertedValues= convpres(valuesToConvert,
inputPressureUnits, outputPressureUnits)

Description convertedValues= convpres(valuesToConvert,
inputPressureUnits, outputPressureUnits) computes the
conversion factor from specified input pressure units to specified output
pressure units. It then applies the conversion factor to the input to
produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputPressureUnits to outputPressureUnits.

inputPressureUnits

Specified input pressure units, as strings. Supported unit strings are:

'psi' Pound force per square inch

'Pa' Pascal

'psf' Pound force per square foot

'atm' Atmosphere

outputPressureUnits

Specified output pressure units, as strings. Supported unit strings are:

'psi' Pound force per square inch

'Pa' Pascal

'psf' Pound force per square foot

'atm' Atmosphere

3-105

convpres

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert two pressures from pound force per square inch to atmospheres:

a = convpres([14.696 35],'psi','atm')

a =

1.0000 2.3816

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convtemp | convvel

3-106

convtemp

Purpose Convert from temperature units to desired temperature units

Syntax convertedValues = convtemp(valuesToConvert,
inputTemperatureUnits, outputTemperatureUnits)

Description convertedValues = convtemp(valuesToConvert,
inputTemperatureUnits, outputTemperatureUnits)
computes the conversion factor from specified input temperature units
to specified output temperature units. It then applies the conversion
factor to the input, to produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputTemperatureUnits to outputTemperatureUnits.

inputTemperatureUnits

Specified input temperature units, as strings. Supported unit strings
are:

'K' Kelvin

'F' Degrees Fahrenheit

'C' Degrees Celsius

'R' Degrees Rankine

outputTemperatureUnits

Specified output temperature units, as strings. Supported unit strings
are:

'K' Kelvin

'F' Degrees Fahrenheit

3-107

convtemp

'C' Degrees Celsius

'R' Degrees Rankine

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three temperatures from degrees Celsius to degrees Fahrenheit:

a = convtemp([0 100 15],'C','F')

a =

32.0000 212.0000 59.0000

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convpres | convvel

3-108

convvel

Purpose Convert from velocity units to desired velocity units

Syntax convertedValues = convvel(valuesToConvert,
inputVelocityUnits, outputVelocityUnits)

Description convertedValues = convvel(valuesToConvert,
inputVelocityUnits, outputVelocityUnits) computes the
conversion factor from specified input velocity units to specified output
velocity units. It then applies the conversion factor to the input to
produce the output in the desired units.

Input
Arguments

valuesToConvert

Floating-point array of size m-by-n values that the function is to
convert. All values must have the same unit conversions from
inputVelocityUnits to outputVelocityUnits.

inputVelocityUnits

Specified input velocity units, as strings. Supported unit strings are:

'ft/s' Feet per second

'm/s' Meters per second

'km/s' Kilometers per second

'in/s' Inches per second

'km/h' Kilometers per hour

'mph' Miles per hour

'kts' Knots

'ft/min' Feet per minute

outputVelocityUnits

Specified output velocity units, as strings. Supported unit strings are:

3-109

convvel

'ft/s' Feet per second

'm/s' Meters per second

'km/s' Kilometers per second

'in/s' Inches per second

'km/h' Kilometers per hour

'mph' Miles per hour

'kts' Knots

'ft/min' Feet per minute

Output
Arguments

convertedValues

Floating-point array of size m-by-n values that the function has
converted.

Examples Convert three velocities from feet per minute to meters per second:

a = convvel([30 100 250],'ft/min','m/s')

a =

0.1524 0.5080 1.2700

See Also convacc | convang | convangacc | convangvel | convdensity |
convforce | convlength | convmass | convpres | convtemp

3-110

correctairspeed

Purpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from one of other two airspeeds

Syntax outputAirpseed = correctairspeed(inputAirspeed,
speedOfSound,

pressure0, inputAirspeedType, outputAirspeedType)

Description outputAirpseed = correctairspeed(inputAirspeed,
speedOfSound, pressure0, inputAirspeedType,
outputAirspeedType) computes the conversion factor from
specified input airspeed to specified output airspeed using speed of
sound and static pressure. The function applies the conversion factor to
the input airspeed to produce the output in the desired airspeed.

This function is based on an assumption of compressible, isentropic
(subsonic flow), dry air with constant specific heat ratio (gamma).

Input
Arguments

inputAirspeed

Floating-point array of size m-by-1 of airspeeds in meters per
second. All values must have the same airspeed conversions from
inputAirspeedType to outputAirspeedType.

speedOfSound

Floating-point array of size m-by-1 of speeds of sound, in meters per
second.

pressure0

Floating-point array of size m-by-1 of static air pressures, in pascal.

inputAirspeedType

Input airspeed string. Supported airspeed strings are:

3-111

correctairspeed

'TAS' True airspeed

'CAS' Calibrated airspeed

'EAS' Equivalent airspeed

outputAirspeedType

Output airspeed string. Supported airspeed strings are:

'TAS' True airspeed

'CAS' Calibrated airspeed

'EAS' Equivalent airspeed

Output
Arguments

outputAirpseed

Floating-point array of size m-by-1 of airspeeds in meters per second.

Examples Convert three airspeeds from true airspeed to equivalent airspeed at
1000 ms:

as = correctairspeed([25.7222; 10.2889; 3.0867], 336.4, 89874.6,'TAS','EAS')

as =

24.5057

9.8023

2.9407

Convert airspeeds from true airspeed to equivalent airspeed at 1000
m and 0 m:

ain = [25.7222; 10.2889; 3.0867];
sos = [336.4; 340.3; 340.3];
P0 = [89874.6; 101325; 101325];
as = correctairspeed(ain, sos, P0,'TAS','EAS')

3-112

correctairspeed

as =

24.5057
10.2887
3.0866

References Lowry, J.T., Performance of Light Aircraft, AIAA Education Series,
Washington, D.C., 1999

Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August1986

See Also airspeed

3-113

Aero.Animation.createBody

Purpose Create body and its associated patches in animation

Syntax idx = createBody(h,bodyDataSrc)
idx = h.createBody(bodyDataSrc)
idx = createBody(h,bodyDataSrc,geometrysource)
idx = h.createBody(bodyDataSrc,geometrysource)

Description idx = createBody(h,bodyDataSrc) and idx =
h.createBody(bodyDataSrc) create a new body using the
bodyDataSrc, makes its patches, and adds it to the animation object h.
This command assumes a default geometry source type set to Auto.

idx = createBody(h,bodyDataSrc,geometrysource) and idx =
h.createBody(bodyDataSrc,geometrysource) create a new body
using the bodyDataSrc file, makes its patches, and adds it to the
animation object h. geometrysource is the geometry source type for
the body.

Input
Arguments

bodyDataSrc Source of data for body.

geometrysource Geometry source type for body:
• Auto — Recognizes .mat extensions as
MAT-files, .ac extensions as Ac3d files,
and structures containing fields of name,
faces, vertices, and cdata as MATLAB
variables. Default.

• Variable — Recognizes structures
containing fields of name, faces, vertices,
and cdata as MATLAB variables.

• MatFile— Recognizes .mat extensions as
MAT-files.

• Ac3d— Recognizes .ac extensions as Ac3d
files.

• Custom— Recognizes custom extensions.

3-114

Aero.Animation.createBody

Output
Arguments

idx Index of the body to be created.

Examples Create a body for the animation object, h. Use the Ac3d format data
source pa24-250_orange.ac, for the body.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

3-115

datcomimport

Purpose Bring DATCOM file into MATLAB environment

Syntax aero = datcomimport(file)
aero = datcomimport(file, usenan)
aero = datcomimport(file, usenan, verbose)
aero = datcomimport(file, usenan, verbose, filetype)

Description aero = datcomimport(file) takes a file name, file, as a string (or a
cell array of file names as strings), and imports aerodynamic data from
file into a cell array of structures, aero. Before reading the DATCOM
file, the function initializes values to 99999 to show when there is not a
full set of data for the DATCOM case.

aero = datcomimport(file, usenan) is an alternate method allowing
the replacement of data points with NaN or zero where no DATCOM
methods exist or where the method is not applicable. The default value
for usenan is true.

aero = datcomimport(file, usenan, verbose) is an alternate
method to display the status of the DATCOM file being read. The
default value for verbose is 2, which displays a wait bar. Other options
are 0, which displays no information, and 1, which displays text to the
MATLAB Command Window.

aero = datcomimport(file, usenan, verbose, filetype) is an
alternate method that allows you to specify which type of DATCOM file
to read. The possible values are listed in this table:

filetype Value Output File from DATCOM

6 (Default) for006.dat output by all DATCOM
versions

21 for021.dat output by DATCOM 2007,
DATCOM 2008, and DATCOM 2011

42 for042.csv output by DATCOM 2008 and
DATCOM 2011

3-116

datcomimport

When filetype is 6, the function reads the for006.dat file output by
DATCOM.

Note If filetype is 21, the function collates the breakpoints and data
from all the cases and appends them as the last entry of aero.

The next option is 21, which reads the for021.dat file output by
DATCOM 2007. The last option is 42, which reads the for042.csv file
output by DATCOM 2008 and DATCOM 2011.

Fields for the 1976, 1999, 2007, 2008, and 2011 versions of the type 6
output files are described:

• “Fields for 1976 Version (File Type 6)” on page 3-117

• “Fields for 1999 Version (File Type 6)” on page 3-137

• “Fields for 2007, 2008, and 2011 Versions (File Type 6)” on page 3-143

Fields for 2007, 2008, and 2011 versions of the type 21 output file are
described in:

• “Fields for 2007, 2008, and 2011 Versions (File Type 21)” on page
3-147

Fields for 2008 and 2011 versions of the type 42 output file are described
in:

• “Fields for 2008 and 2011 Version (File Type 42)” on page 3-153

Fields for 1976 Version (File Type 6)

The fields of aero depend on the data within the DATCOM file.

3-117

datcomimport

Common Fields for the 1976 Version (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 0

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

hypers Logical denoting, when true, that
mach numbers above tsmach are
hypersonic. Default values are
supersonic.

false

loop Scalar denoting the type of looping
done to generate the DATCOM file.
When loop is 1, mach and alt are
varied together. When loop is 2, mach
varies while alt is fixed. Altitude
is then updated and Mach numbers
are cycled through again. When loop
is 3, mach is fixed while alt varies.
mach is then updated and altitudes
are cycled through again.

1

sref Scalar denoting the reference area
for the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

3-118

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

blref Scalar denoting the lateral reference
length.

[]

dim String denoting the specified system
of units for the case.

'ft'

deriv String denoting the specified angle
units for the case.

'deg'

stmach Scalar value setting the upper limit
of subsonic Mach numbers.

0.6

tsmach Scalar value setting the lower limit of
supersonic Mach numbers.

1.4

save Logical denoting whether the input
values for this case are used in the
next case.

false

stype Scalar denoting the type of
asymmetric flap for the case.

[]

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of
dynamic derivative data for the case.
When dynamic derivative runs are
read, this value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs
are read, this value is set to 10.

1

3-119

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

part Logical denoting the reading of
partial data for the case. When
partial runs are written for each
Mach number, this value is set to
true.

false

highsym Logical denoting the reading of
symmetric flap high-lift data for the
case. When symmetric flap runs are
read, this value is set to true.

false

highasy Logical denoting the reading of
asymmetric flap high-lift data for the
case. When asymmetric flap runs are
read, this value is set to true.

false

highcon Logical denoting the reading of
control/trim tab high-lift data for the
case. When control/trim tab runs are
read, this value is set to true.

false

tjet Logical denoting the reading of
transverse-jet control data for the
case. When transverse-jet control
runs are read, this value is set to
true.

false

hypeff Logical denoting the reading of
hypersonic flap effectiveness data
for the case. When hypersonic flap
effectiveness runs are read, this
value is set to true.

false

3-120

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

lb Logical denoting the reading of low
aspect ratio wing or lifting body data
for the case. When low aspect ratio
wing or lifting body runs are read,
this value is set to true.

false

pwr Logical denoting the reading of power
effects data for the case. When power
effects runs are read, this value is set
to true.

false

grnd Logical denoting the reading of
ground effects data for the case.
When ground effects runs are read,
this value is set to true.

false

wsspn Scalar denoting the semi-span
theoretical panel for wing. This
value is used to determine if the
configuration contains a canard.

1

hsspn Scalar denoting the semi-span
theoretical panel for horizontal tail.
This value is used to determine if the
configuration contains a canard.

1

ndelta Number of control surface deflections:
delta, deltal, or deltar.

0

delta Array of control-surface streamwise
deflection angles.

[]

deltal Array of left lifting surface
streamwise control deflection
angles, which are defined positive for
trailing-edge down.

[]

3-121

datcomimport

Common Fields for the 1976 Version (File Type 6) (Continued)

Field Description Default

deltar Array of right lifting surface
streamwise control deflection angles,
which are defined positive for
trailing-edge down.

[]

ngh Scalar denoting the number of ground
altitudes.

0

grndht Array of ground heights. []

config Structure of logicals denoting
whether the case contains horizontal
tails.

false, as follows.

config.downwash = false;
config.body = false;
config.wing = false;
config.htail = false;
config.vtail = false;
config.vfin = false;

version Version of DATCOM file. 1976

Static Longitude and Lateral Stability Fields Available for the 1976 Version (File
Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined
positive for an aft-acting load.

alpha, mach, alt, build, grndht,
delta

cl Lift coefficients, which are defined
positive for an up-acting load.

alpha, mach, alt, build, grndht,
delta

3-122

datcomimport

Static Longitude and Lateral Stability Fields Available for the 1976 Version (File
Type 6) (Continued)

Field Matrix of... Function of...

cm Pitching-moment coefficients, which
are defined positive for a nose-up
rotation.

alpha, mach, alt, build, grndht,
delta

cn Normal-force coefficients, which are
defined positive for a normal force in
the +Z direction.

alpha, mach, alt, build, grndht,
delta

ca Axial-force coefficients, which are
defined positive for a normal force in
the +X direction.

alpha, mach, alt, build, grndht,
delta

xcp Distances between moment reference
center and the center of pressure
divided by the longitudinal reference
length. Distances are defined positive
for a location forward of the center of
gravity.

alpha, mach, alt, build, grndht,
delta

cla Derivatives of lift coefficients with
respect to alpha.

alpha, mach, alt, build, grndht,
delta

cma Derivatives of pitching-moment
coefficients with respect to alpha.

alpha, mach, alt, build, grndht,
delta

cyb Derivatives of side-force coefficients
with respect to sideslip angle.

alpha, mach, alt, build, grndht,
delta

cnb Derivatives of yawing-moment
coefficients with respect to sideslip
angle.

alpha, mach, alt, build, grndht,
delta

clb Derivatives of rolling-moment
coefficients with respect to sideslip
angle.

alpha, mach, alt, build, grndht,
delta

3-123

datcomimport

Static Longitude and Lateral Stability Fields Available for the 1976 Version (File
Type 6) (Continued)

Field Matrix of... Function of...

qqinf Ratios of dynamic pressure at the
horizontal tail to the freestream
value.

alpha, mach, alt, build, grndht,
delta

eps Downwash angle at horizontal tail in
degrees.

alpha, mach, alt, build, grndht,
delta

depsdalp Downwash angle with respect to
angle of attack.

alpha, mach, alt, build, grndht,
delta

Dynamic Derivative Fields for the 1976 Version (File Type 6)

Field Matrix of... Function of...

clq Rolling-moment derivatives due to pitch
rate.

alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

clad Lift-force derivatives due to rate of angle of
attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cnr Yawing-moment derivatives due to yaw
rate.

alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build

3-124

datcomimport

High-Lift and Control Fields for Symmetric Flaps for the 1976 Version (File Type 6)

Field Matrix of... Function of...

dcl_sym Incremental lift coefficients due to deflection
of control surface, valid in the linear-lift
angle of attack range.

delta, mach, alt

dcm_sym Incremental pitching-moment coefficients
due to deflection of control surface, valid in
the linear-lift angle of attack range.

delta, mach, alt

dclmax_sym Incremental maximum lift coefficients. delta, mach, alt

dcdmin_sym Incremental minimum drag coefficients due
to control or flap deflection.

delta, mach, alt

clad_sym Lift-curve slope of the deflected, translated
surface.

delta, mach, alt

cha_sym Control-surface hinge-moment derivatives
due to angle of attack. These derivatives,
when defined positive, will tend to rotate
the flap trailing edge down.

delta, mach, alt

chd_sym Control-surface hinge-moment derivatives
due to control deflection. When defined
positive, these derivatives will tend to
rotate the flap trailing edge down.

delta, mach, alt

dcdi_sym Incremental induced drag coefficients due
to flap detection.

alpha, delta, mach, alt

3-125

datcomimport

High-Lift and Control Fields Available for Asymmetric Flaps for the 1976 Version
(File Type 6)

Field Matrix of... Function of...

xsc Streamwise distances from wing
leading edge to spoiler tip.

delta, mach, alt

hsc Projected height of spoiler measured
from normal to airfoil meanline.

delta, mach, alt

ddc Projected height of deflector for
spoiler-slot-deflector control.

delta, mach, alt

dsc Projected height of spoiler control. delta, mach, alt

clroll Incremental rolling-moment
coefficients due to asymmetrical
deflection of control surface. The
coefficients are defined positive
when right wing is down.

delta, mach, and alt, or alpha,
delta, mach, and alt for differential
horizontal stabilizer

cn_asy Incremental yawing-moment
coefficients due to asymmetrical
deflection of control surface. The
coefficients are defined positive
when nose is right.

delta, mach, and alt, or alpha,
delta, mach, and alt for plain flaps

High-Lift and Control Fields Available for Control/Trim Tabs for the 1976 Version
(File Type 6)

Field Matrix of... Function of...

fc_con Stick forces or stick force coefficients. alpha, delta, mach, alt

fhmcoeff_free Flap-hinge moment coefficients tab
free.

alpha, delta, mach, alt

fhmcoeff_lock Flap-hinge moment coefficients tab
locked.

alpha, delta, mach, alt

3-126

datcomimport

High-Lift and Control Fields Available for Control/Trim Tabs for the 1976 Version
(File Type 6) (Continued)

Field Matrix of... Function of...

fhmcoeff_gear Flap-hinge moment coefficients due to
gearing.

alpha, delta, mach, alt

ttab_def Trim-tab deflections for zero stick
force.

alpha, delta, mach, alt

High-Lift and Control Fields Available for Trim for the 1976 Version (File Type 6)

Field Matrix of... Function of...

cl_utrim Untrimmed lift coefficients, which are
defined positive for an up-acting load.

alpha, mach, alt

cd_utrim Untrimmed drag coefficients, which are
defined positive for an aft-acting load.

alpha, mach, alt

cm_utrim Untrimmed pitching-moment coefficients,
which are defined positive for a nose-up
rotation.

alpha, mach, alt

delt_trim Trimmed control-surface streamwise
deflection angles.

alpha, mach, alt

dcl_trim Trimmed incremental lift coefficients in
the linear-lift angle of attack range due to
deflection of control surface.

alpha, mach, alt

dclmax_trim Trimmed incremental maximum lift
coefficients.

alpha, mach, alt

dcdi_trim Trimmed incremental induced drag
coefficients due to flap deflection.

alpha, mach, alt

dcdmin_trim Trimmed incremental minimum drag
coefficients due to control or flap deflection.

alpha, mach, alt

3-127

datcomimport

High-Lift and Control Fields Available for Trim for the 1976 Version (File Type
6) (Continued)

Field Matrix of... Function of...

cha_trim Trimmed control-surface hinge-moment
derivatives due to angle of attack.

alpha, mach, alt

chd_trim Trimmed control-surface hinge-moment
derivatives due to control deflection.

alpha, mach, alt

cl_tailutrim Untrimmed stabilizer lift coefficients,
which are defined positive for an up-acting
load.

alpha, mach, alt

cd_tailutrim Untrimmed stabilizer drag coefficients,
which are defined positive for an aft-acting
load.

alpha, mach, alt

cm_tailutrim Untrimmed stabilizer pitching-moment
coefficients, which are defined positive for
a nose-up rotation.

alpha, mach, alt

hm_tailutrim Untrimmed stabilizer hinge-moment
coefficients, which are defined positive for
a stabilizer rotation with leading edge up
and trailing edge down.

alpha, mach, alt

aliht_tailtrim Stabilizer incidence required to trim. alpha, mach, alt

cl_tailtrim Trimmed stabilizer lift coefficients, which
are defined positive for an up-acting load.

alpha, mach, alt

cd_tailtrim Trimmed stabilizer drag coefficients, which
are defined positive for an aft-acting load.

alpha, mach, alt

cm_tailtrim Trimmed stabilizer pitching-moment
coefficients, which are defined positive for
a nose-up rotation.

alpha, mach, alt

3-128

datcomimport

High-Lift and Control Fields Available for Trim for the 1976 Version (File Type
6) (Continued)

Field Matrix of... Function of...

hm_tailtrim Trimmed stabilizer hinge-moment
coefficients, which are defined positive for
a stabilizer rotation with leading edge up
and trailing edge down.

alpha, mach, alt

cl_trimi Lift coefficients at trim incidence. These
coefficients are defined positive for an
up-acting load.

alpha, mach, alt

cd_trimi Drag coefficients at trim incidence. These
coefficients are defined positive for an
aft-acting load.

alpha, mach, alt

Transverse Jet Control Fields for the 1976 Version (File Type 6)

Field Description Stored with Indices of...

time Matrix of times. mach, alt, alpha

ctrlfrc Matrix of control forces. mach, alt, alpha

locmach Matrix of local Mach numbers. mach, alt, alpha

reynum Matrix of Reynolds numbers. mach, alt, alpha

locpres Matrix of local pressures. mach, alt, alpha

dynpres Matrix of dynamic pressures. mach, alt, alpha

blayer Cell array of strings containing the state of
the boundary layer.

mach, alt, alpha

ctrlcoeff Matrix of control force coefficients. mach, alt, alpha

corrcoeff Matrix of corrected force coefficients. mach, alt, alpha

sonicamp Matrix of sonic amplification factors. mach, alt, alpha

3-129

datcomimport

Transverse Jet Control Fields for the 1976 Version (File Type 6) (Continued)

Field Description Stored with Indices of...

ampfact Matrix of amplification factors. mach, alt, alpha

vacthr Matrix of vacuum thrusts. mach, alt, alpha

minpres Matrix of minimum pressure ratios. mach, alt, alpha

minjet Matrix of minimum jet pressures. mach, alt, alpha

jetpres Matrix of jet pressures. mach, alt, alpha

massflow Matrix of mass flow rates. mach, alt, alpha

propelwt Matrix of propellant weights. mach, alt, alpha

Hypersonic Fields for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...

df_normal Increments in normal force per spanwise
foot of control.

alpha, delta, mach

df_axial Increments in axial force per spanwise foot
of control.

alpha, delta, mach

cm_normal Increments in pitching moment due to
normal force per spanwise foot of control.

alpha, delta, mach

cm_axial Increments in pitching moment due to axial
force per spanwise foot of control.

alpha, delta, mach

cp_normal Center of pressure locations of normal force. alpha, delta, mach

cp_axial Center of pressure locations of axial force. alpha, delta, mach

3-130

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)

Field Matrix of... Stored with Indices of...

wetarea_b Body wetted area. mach, alt, number of runs

xcg_b Longitudinal locations of the
center of gravity.

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

zcg_b Vertical locations of the center of
gravity.

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

basearea_b Body base area. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cd0_b Body zero lift drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

basedrag_b Body base drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

fricdrag_b Body friction drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

presdrag_b Body pressure drags. mach, alt, number of runs
(normally 1, 2 for hypers =
true)

lemac Leading edge mean aerodynamic
chords.

mach, alt

sidewash sidewash mach, alt

hiv_b_w iv-b(w) alpha, mach, alt

hiv_w_h iv-w(h) alpha, mach, alt

hiv_b_h iv-b(h) alpha, mach, alt

3-131

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

gamma gamma*2*pi*alpha*v*r alpha, mach, alt

gamma2pialpvr gamma*(2*pi*alpha*v*r)t alpha, mach, alt

clpgammacl0 clp(gamma=cl=0) mach, alt

clpgammaclp clp(gamma)/cl (gamma=0) mach, alt

cnptheta cnp/theta mach, alt

cypgamma cyp/gamma mach, alt

cypcl cyp/cl (cl=0) mach, alt

clbgamma clb/gamma mach, alt

cmothetaw (cmo/theta)w mach, alt

cmothetah (cmo/theta)h mach, alt

espeff (epsoln)eff alpha, mach, and alt

despdalpeff d(epsoln)/d(alpha) eff alpha, mach, alt

dragdiv drag divergence mach number mach, alt

cd0mach Four Mach numbers for the zero
lift drag.

index, mach, alt

cd0 Four zero lift drags. index, mach, alt

clbclmfb_**** (clb/cl)mfb, where **** is
either wb (wing-body) or bht
(body-horizontal tail).

mach, alt.

cnam14_**** (cna)m=1.4, where **** is
either wb (wing-body) or bht
(body-horizontal tail).

mach,alt

3-132

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

area_*_** Areas, where * is either w (wing),
ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

taperratio_*_** Taper ratios, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

aspectratio_*_** Aspect ratios, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

3-133

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

qcsweep_*_** Quarter chord sweeps, where *
is either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

mac_*_** Mean aerodynamic chords,
where * is either w (wing), ht
(horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

qcmac_*_** Quarter chord x(mac), where *
is either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

3-134

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

ymac_*_** y(mac), where * is either w (wing),
ht (horizontal tail), vt (vertical
tail), or vf (ventral fin) and ** is
either tt (total theoretical), ti
(theoretical inboard), te (total
exposed), ei (exposed inboard),
or o (outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cd0_*_** Zero lift drags, where * is either
w (wing), ht (horizontal tail),
vt (vertical tail), or vf (ventral
fin) and ** is either tt (total
theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

friccoeff_*_** Friction coefficients, where * is
either w (wing), ht (horizontal
tail), vt (vertical tail), or vf
(ventral fin) and ** is either tt
(total theoretical), ti (theoretical
inboard), te (total exposed),
ei (exposed inboard), or o
(outboard).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cla_b_*** cla-b(***), where *** is either
w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cla_***_b cla-***(b), where *** is either
w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

3-135

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

k_b_*** k-b(***), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

k_***_b k-***(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

xacc_b_*** xac/c-b(***), where *** is
either w (wing) or ht (stabilizer).

mach, alt, number of runs
(normally 1, 2 for hypers =
true)

cdlcl2_*** cdl/cl^2, where *** is either w
(wing) or ht (stabilizer).

mach, alt

clbcl_*** clb/cl, where *** is either w
(wing) or ht (stabilizer).

mach, alt

fmach0_*** Force break Mach numbers with
zero sweep, where *** is either w
(wing) or ht (stabilizer).

mach, alt

fmach_*** Force break Mach numbers with
sweep, where *** is either w
(wing) or ht (stabilizer).

mach, alt

macha_*** mach(a), where *** is either w
(wing) or ht (stabilizer).

mach, alt

machb_*** mach(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt

claa_*** cla(a), where *** is either w
(wing) or ht (stabilizer).

mach, alt

clab_*** cla(b), where *** is either w
(wing) or ht (stabilizer).

mach, alt

3-136

datcomimport

Auxiliary and Partial Fields Available for the 1976 Version (File Type 6)
(Continued)

Field Matrix of... Stored with Indices of...

clbm06_*** (clb/cl)m=0.6, where *** is
either w (wing) or ht (stabilizer).

mach, alt

clbm14_*** (clb/cl)m=1.4, where *** is
either w (wing) or ht (stabilizer).

mach, alt

clalpmach_*** Five Mach numbers for the lift
curve slope, where *** is either w
(wing) or ht (stabilizer).

index, mach, alt

clalp_*** Five lift-curve slope values,
where *** is either w (wing) or ht
(stabilizer).

index, mach, alt

Fields for 1999 Version (File Type 6)

Common Fields for the 1999 Version (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 1

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

3-137

datcomimport

Common Fields for the 1999 Version (File Type 6) (Continued)

Field Description Default

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll angle. 0

loop Scalar denoting the type of looping
performed to generate the DATCOM file.
When loop is 1, mach and alt are varied
together. The only loop option for the 1999
version of DATCOM is loop is equal to 1.

1

sref Scalar denoting the reference area for the
case.

[]

cbar Scalar denoting the longitudinal reference
length.

[]

blref Scalar denoting the lateral reference
length.

[]

dim String denoting the specified system of
units for the case.

'ft'

deriv String denoting the specified angle units
for the case.

'deg'

save Logical denoting whether the input values
for this case are used in the next case.

false

stype Scalar denoting the type of asymmetric
flap for the case.

[]

trim Logical denoting the reading of trim data
for the case. When trim runs are read,
this value is set to true.

false

3-138

datcomimport

Common Fields for the 1999 Version (File Type 6) (Continued)

Field Description Default

damp Logical denoting the reading of dynamic
derivative data for the case. When
dynamic derivative runs are read, this
value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs are
read, this value is set to the number
of build runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial
data for the case. When partial runs are
written for each Mach number, this value
is set to true.

false

hypeff Logical denoting the reading of hypersonic
data for the case. When hypersonic data
is read, this value is set to true.

false

ngh Scalar denoting the number of ground
altitudes.

0

nolat Logical denoting the calculation of the
lateral-direction derivatives is inhibited.

false

3-139

datcomimport

Common Fields for the 1999 Version (File Type 6) (Continued)

Field Description Default

config Structure of logicals and structures
detailing the case configuration and fin
deflections.

config.body = false
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

version Version of DATCOM file. 1999

Static Longitude and Lateral Stability Fields Available for the 1999 Version (File
Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined positive for
an aft-acting load.

alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an
up-acting load.

alpha, mach, alt, build

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, build

3-140

datcomimport

Static Longitude and Lateral Stability Fields Available for the 1999 Version (File
Type 6) (Continued)

Field Matrix of... Function of...

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and
the center of pressure divided by the longitudinal
reference length. These distances are defined
positive for a location forward of the center of
gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients with
respect to alpha.

alpha, mach, alt, build

cma Derivatives of pitching-moment coefficients with
respect to alpha.

alpha, mach, alt, build

cyb Derivatives of side-force coefficients with respect
to sideslip angle.

alpha, mach, alt, build

cnb Derivatives of yawing-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build

cy Side-force coefficients. alpha, mach, alt, build

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build

3-141

datcomimport

Dynamic Derivative Fields for the 1999 Version (File Type 6)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch
rate.

alpha, mach, alt, build

cmq Pitching-moment derivatives due to
pitch rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch
rate.

alpha, mach, alt, build

cnad Normal-force derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to
rate of angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll
rate.

alpha, mach, alt, build

cyp Lateral force derivatives due to roll
rate.

alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll
rate.

alpha, mach, alt, build

cnr Yawing-moment derivatives due to
yaw rate.

alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw
rate.

alpha, mach, alt, build

cyr Side force derivatives due to yaw rate. alpha, mach, alt, build

3-142

datcomimport

Fields for 2007, 2008, and 2011 Versions (File Type 6)

Common Fields for the 2007, 2008, and 2011 Versions (File Type 6)

Field Description Default

case String containing the case ID. []

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalt Number of altitudes. 1

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll
angle.

0

loop Scalar denoting the type of looping
performed to generate the DATCOM
file. When loop is 1, mach and alt are
varied together. The only loop option
for the 2007 version of DATCOM is
loop is equal to 1.

1

sref Scalar denoting the reference area for
the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

3-143

datcomimport

Common Fields for the 2007, 2008, and 2011 Versions (File Type 6) (Continued)

Field Description Default

blref Scalar denoting the lateral reference
length.

[]

dim String denoting the specified system of
units for the case.

'ft'

deriv String denoting the specified angle
units for the case.

'deg'

save Logical denoting whether the input
values for this case are used in the next
case.

false

stype Scalar denoting the type of asymmetric
flap for the case.

[]

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of dynamic
derivative data for the case. When
dynamic derivative runs are read, this
value is set to true.

false

build Scalar denoting the reading of build
data for the case. When build runs are
read, this value is set to the number
of build runs depending on the vehicle
configuration.

1

part Logical denoting the reading of partial
data for the case. When partial runs
are written for each Mach number, this
value is set to true.

false

3-144

datcomimport

Common Fields for the 2007, 2008, and 2011 Versions (File Type 6) (Continued)

Field Description Default

hypeff Logical denoting the reading of
hypersonic data for the case. When
hypersonic data is read, this value is
set to true.

false

ngh Scalar denoting the number of ground
altitudes.

0

nolat Logical denoting the calculation of
the lateral-direction derivatives is
inhibited.

false

config Structure of logicals and structures
detailing the case configuration and fin
deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];
config.fin4.delta = [];

nolat_-
namelist

Logical denoting the calculation of the
lateral-direction derivatives is inhibited
in the DATCOM input case.

false

version Version of DATCOM file. 2007

3-145

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007, 2008, and
2011 Versions (File Type 6)

Field Matrix of... Function of...

cd Drag coefficients, which are defined positive for
an aft-acting load.

alpha, mach, alt, build

cl Lift coefficients, which are defined positive for an
up-acting load.

alpha, mach, alt, build

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, machalt, build

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, build

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, build

xcp Distances between moment reference center and
the center of pressure divided by the longitudinal
reference length. These distances are defined
positive for a location forward of the center of
gravity.

alpha, mach, alt, build

cna Derivatives of normal-force coefficients with
respect to alpha.

alpha, mach, alt, build

cma Derivatives of pitching-moment coefficients with
respect to alpha.

alpha, mach, alt, build

cyb Derivatives of side-force coefficients with respect
to sideslip angle.

alpha, mach, alt, build

cnb Derivatives of yawing-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clb Derivatives of rolling-moment coefficients with
respect to sideslip angle.

alpha, mach, alt, build

clod Ratios of lift coefficient to drag coefficient. alpha, mach, alt, build

3-146

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007, 2008, and
2011 Versions (File Type 6) (Continued)

Field Matrix of... Function of...

cy Side-force coefficients. alpha, mach, alt, build

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, build

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, build

Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions (File Type 6)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build

cnad Normal-force derivatives due to rate of angle
of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

clp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, build

clr Rolling-moment derivatives due to yaw rate alpha, mach, alt, build

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build

Fields for 2007, 2008, and 2011 Versions (File Type 21)

For 2008 and 2011, the version is 2008. There are no discernible
differences in the outputs of these versions.

3-147

datcomimport

Common Fields for the 2007, 2008, and 2011 Versions (File Type 21)

Field Description Default

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nalpha Number of angles of attack. 0

beta Scalar containing sideslip
angle.

0

total_col Scalar denoting the type of
looping performed to generate
the DATCOM file. When loop
is 1, mach and alt are varied
together. The only loop option
for the 2007, 2008, and 2011
versions of DATCOM is loop
equal to 1.

[]

deriv_col Logical denoting the
calculation of the
lateral-direction derivatives is
inhibited.

0

config Structure of logicals and
structures detailing the
case configuration and fin
deflections.

config.fin1.delta = zeros(1,8);
config.fin2.delta = zeros(1,8);
config.fin3.delta = zeros(1,8);
config.fin4.delta = zeros(1,8);

version Version of DATCOM file. 2007

3-148

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2007, 2008, and
2011 Versions (File Type 21)

Field Matrix of... Function of...

cn Normal-force coefficients, which are defined
positive for a normal force in the +Z direction.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cm Pitching-moment coefficients, which are defined
positive for a nose-up rotation.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

ca Axial-force coefficients, which are defined positive
for a normal force in the +X direction.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cy Side-force coefficients. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cln Yawing-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cll Rolling-moment coefficient in body-axis. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

3-149

datcomimport

Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions (File Type 21)

Field Matrix of... Function of...

cnad Normal-force derivatives due to rate of angle
of attack.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cmq Pitching-moment derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyq Side-force due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

3-150

datcomimport

Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions (File Type 21)
(Continued)

Field Matrix of... Function of...

clnq Yawing-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllq Rolling-moment due to pitch rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cap Axial-force due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

3-151

datcomimport

Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions (File Type 21)
(Continued)

Field Matrix of... Function of...

clnp Yawing-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllp Rolling-moment due to roll rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cnr Yawing-moment derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

car Axial-force due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

3-152

datcomimport

Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions (File Type 21)
(Continued)

Field Matrix of... Function of...

clnr Yawing-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

cllr Rolling-moment due to yaw rate. alpha, mach, alt, beta,
config.fin1.delta,
config.fin2.delta,
config.fin3.delta,
config.fin4.delta

Fields for 2008 and 2011 Version (File Type 42)

Fields for the 2008 and 2011 Version (File Type 42)

Field Description Default

case String containing the case ID. []

totalCol Scalar containing number of columns
of data in file.

[]

mach Array of Mach numbers. []

alt Array of altitudes. []

alpha Array of angles of attack. []

nmach Number of Mach numbers. 0

nalpha Number of angles of attack. 0

rnnub Array of Reynolds numbers. []

q Dynamic pressure. []

3-153

datcomimport

Fields for the 2008 and 2011 Version (File Type 42) (Continued)

Field Description Default

beta Scalar containing sideslip angle. 0

phi Scalar containing aerodynamic roll
angle.

0

sref Scalar denoting the reference area
for the case.

[]

cbar Scalar denoting the longitudinal
reference length.

[]

blref Scalar denoting the lateral reference
length.

[]

xcg Distance from nose to center of
gravity.

[]

xmrp Distance from nose to center of
gravity, measured in calibers.

[]

deriv String denoting the specified angle
units for the case.

'deg'

trim Logical denoting the reading of trim
data for the case. When trim runs are
read, this value is set to true.

false

damp Logical denoting the reading of
dynamic derivative data for the case.
When dynamic derivative runs are
read, this value is set to true.

false

build Scalar denoting the reading of partial
data for the case. This value is set to
the number of partial runs depending
on the vehicle configuration.

1

3-154

datcomimport

Fields for the 2008 and 2011 Version (File Type 42) (Continued)

Field Description Default

part Logical denoting the reading of
partial data for the case. When
partial runs are written for each
Mach number, this value is set to
true.

false

nolat Logical denoting the calculation of
the lateral-direction derivatives is
inhibited.

true

config Structure of logicals and structures
detailing the case configuration and
fin deflections.

config.body = false;
config.fin1.avail = false;
config.fin1.npanel = [];
config.fin1.delta = [];
config.fin2.avail = false;
config.fin2.npanel = [];
config.fin2.delta = [];
config.fin3.avail = false;
config.fin3.npanel = [];
config.fin3.delta = [];
config.fin4.avail = false;
config.fin4.npanel = [];

version Version of DATCOM file. 2008

Static Longitude and Lateral Stability Fields Available for the 2008 and 2011
Versions (File Type 42)

Field Matrix of... Function of...

delta Trim deflection angles. alpha, mach

cd Drag coefficients, which are defined
positive for an aft-acting load.

alpha, mach, build

3-155

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2008 and 2011
Versions (File Type 42) (Continued)

Field Matrix of... Function of...

cl Lift coefficients, which are defined
positive for an up-acting load.

alpha, mach, build

cm Pitching-moment coefficients, which
are defined positive for a nose-up
rotation.

alpha, mach, build

cn Normal-force coefficients, which are
defined positive for a normal force in
the +Z direction.

alpha, mach, build

ca Axial-force coefficients, which are
defined positive for a normal force in
the +X direction.

alpha, mach, build

caZeroBase Axial-force coefficient with no base
drag included.

alpha, mach, build

caFullBase Axial-force coefficient with full base
drag included.

alpha, mach, build

xcp Distance from nose to center of
pressure.

alpha, mach, build

cna Derivatives of normal-force
coefficients with respect to alpha.

alpha, mach, build

cma Derivatives of pitching-moment
coefficients with respect to alpha.

alpha, mach, build

cyb Derivatives of side-force coefficients
with respect to sideslip angle.

alpha, mach, build

cnb Derivatives of yawing-moment
coefficients with respect to sideslip
angle.

alpha, mach, build

3-156

datcomimport

Static Longitude and Lateral Stability Fields Available for the 2008 and 2011
Versions (File Type 42) (Continued)

Field Matrix of... Function of...

clb Derivatives of rolling-moment
coefficients with respect to sideslip
angle.

alpha, mach, build

clod Ratios of lift coefficient to drag
coefficient.

alpha, mach, build

cy Side-force coefficient. alpha, mach, build

cln Yawing-moment coefficient. alpha, mach, build

cll Rolling-moment coefficient. alpha, mach, build

Dynamic Derivative Fields for the 2008 and 2011 Version (File Type 42)

Field Matrix of... Function of...

cnq Normal-force derivatives due to pitch rate. alpha, mach, alt, build

cmq Pitching-moment derivatives due to pitch
rate.

alpha, mach, alt, build

caq Axial-force derivatives due to pitch rate. alpha, mach, alt, build

cnad Normal-force derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cmad Pitching-moment derivatives due to rate of
angle of attack.

alpha, mach, alt, build

cyq Lateral-force derivatives due to pitch rate. alpha, mach, alt, build

clnq Yawing-moment derivatives due to pitch
rate.

alpha, mach, alt, build

cllq Rolling-moment derivatives due to pitch
rate.

alpha, mach, alt, build

3-157

datcomimport

Dynamic Derivative Fields for the 2008 and 2011 Version (File Type 42)
(Continued)

Field Matrix of... Function of...

cyr Side-force derivatives due to yaw rate. alpha, mach, alt, build

clnr Yawing-moment derivatives due to yaw
rate.

alpha, mach, alt, build

cllr Rolling-moment derivatives due to yaw rate. alpha, mach, alt, build

cyp Lateral-force derivatives due to roll rate. alpha, mach, alt, build

clnp Yawing-moment derivatives due to roll rate. alpha, mach, alt, build

cllp Rolling-moment derivatives due to roll rate. alpha, mach, alt, build

cnp Normal-force derivatives due to roll rate. alpha, mach, alt, build

cmp Pitching-moment derivatives due to roll
rate.

alpha, mach, alt, build

cap Axial-force derivatives due to roll rate. alpha, mach, alt, build

cnr Normal-force derivatives due to yaw rate. alpha, mach, alt, build

cmr Pitching-moment derivatives due to roll
rate.

alpha, mach, alt, build

car Axial-force derivatives due to yaw rate. alpha, mach, alt, build

Examples Read the 1976 version Digital DATCOM output file astdatcom.out:

aero = datcomimport('astdatcom.out')

Read the 1976 Digital DATCOM output file astdatcom.out using zeros
to replace data points where no DATCOM methods exist and displaying
status information in the MATLAB Command Window:

usenan = false;
aero = datcomimport('astdatcom.out', usenan, 1)

3-158

datcomimport

Assumptions
and
Limitations

The operational limitations of the 1976 version DATCOM apply to
the data contained in AERO. For more information on DATCOM
limitations, see [1], section 2.4.5.

USAF Digital DATCOM data for wing section, horizontal tail section,
vertical tail section, and ventral fin section are not read.

References 1. AFFDL-TR-79-3032: The USAF Stability and Control DATCOM,
Volume 1, User’s Manual

2. AFRL-VA-WP-TR-1998-3009: MISSILE DATCOM, User’s Manual –
1997 FORTRAN 90 Revision

3. AFRL-RB-WP-TR-2009-3015: MISSILE DATCOM, User’s Manual
– 2008 Revision

4. AFRL-RB-WP-TR-2011-3071: MISSILE DATCOM, User’s Manual
– 2011 Revision

3-159

dcm2alphabeta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle

Syntax [a b] = dcm2alphabeta(n)

Description [a b] = dcm2alphabeta(n) calculates the angle of attack and sideslip
angle, a and b, for a given direction cosine matrix, n. n is a 3-by-3-by-m
matrix containing m orthogonal direction cosine matrices. a is an m
array of angles of attack. b is an m array of sideslip angles. n performs
the coordinate transformation of a vector in body-axes into a vector in
wind-axes. Angles of attack and sideslip angles are output in radians.

Examples Determine the angle of attack and sideslip angle from direction cosine
matrix:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363

beta =

0.1745

Determine the angle of attack and sideslip angle from multiple direction
cosine matrices:

dcm = [0.8926 0.1736 0.4162; ...
-0.1574 0.9848 -0.0734; ...
-0.4226 0 0.9063];

dcm(:,:,2) = [0.9811 0.0872 0.1730; ...
-0.0859 0.9962 -0.0151; ...
-0.1736 0 0.9848];

3-160

dcm2alphabeta

[alpha beta] = dcm2alphabeta(dcm)

alpha =

0.4363
0.1745

beta =

0.1745
0.0873

See Also angle2dcm | dcm2angle | dcmbody2wind

3-161

dcm2angle

Purpose Create rotation angles from direction cosine matrix

Syntax [r1 r2 r3] = dcm2angle(n)
[r1 r2 r3] = dcm2angle(n, s)
[r1 r2 r3] = dcm2angle(n, s, lim)

Description [r1 r2 r3] = dcm2angle(n) calculates the set of rotation angles, r1,
r2, r3, for a given direction cosine matrix, n. n is a 3-by-3-by-m matrix
containing m direction cosine matrices. r1 returns an m array of first
rotation angles. r2 returns an m array of second rotation angles. r3
returns an m array of third rotation angles. Rotation angles are output
in radians.

[r1 r2 r3] = dcm2angle(n, s) calculates the set of rotation angles,
r1, r2, r3, for a given direction cosine matrix, n, and a specified rotation
sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

[r1 r2 r3] = dcm2angle(n, s, lim) calculates the set of rotation
angles, r1, r2, r3, for a given direction cosine matrix, n, a specified
rotation sequence, s, and a specified angle constraint, lim. lim is a
string specifying either 'Default' or 'ZeroR3'. See “Assumptions and
Limitations” on page 3-163 for full definitions of angle constraints.

Examples Determine the rotation angles from direction cosine matrix:

dcm = [1 0 0; 0 1 0; 0 0 1];
[yaw, pitch, roll] = dcm2angle(dcm)
yaw =

0

pitch =

3-162

dcm2angle

0

roll =

0

Determine the rotation angles from multiple direction cosine matrices:

dcm = [1 0 0; 0 1 0; 0 0 1];

dcm(:,:,2) = [0.85253103550038 0.47703040785184 -0.21361840626067; ...

-0.43212157513194 0.87319830445628 0.22537893734811; ...

0.29404383655186 -0.09983341664683 0.95056378592206];

[pitch, roll, yaw] = dcm2angle(dcm, 'YXZ')

pitch =

0

0.3000

roll =

0

0.1000

yaw =

0

0.5000

Assumptions
and
Limitations

The 'Default' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees.

The 'Default' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.

3-163

dcm2angle

The 'ZeroR3' limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ',
and 'XZY' implementations generate an r2 angle that lies between ±90
degrees, and r1 and r3 angles that lie between ±180 degrees. However,
when r2 is ±90 degrees, r3 is set to 0 degrees.

The 'ZeroR3' limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX',
and 'XZX' implementations generate an r2 angle that lies between 0
and 180 degrees, and r1 and r3 angles that lie between ±180 degrees.
However, when r2 is 0 or ±180 degrees, r3 is set to 0 degrees.

See Also angle2dcm | dcm2quat | quat2dcm | quat2angle

3-164

dcm2latlon

Purpose Convert direction cosine matrix to geodetic latitude and longitude

Syntax [lat lon] = dcm2latlon(n)

Description [lat lon] = dcm2latlon(n) calculates the geodetic latitude and
longitude, lat and lon, for a given direction cosine matrix, n. n is a
3-by-3-by-m matrix containing m orthogonal direction cosine matrices.
lat is an m array of geodetic latitudes. lon is an m array of longitudes. n
performs the coordinate transformation of a vector in Earth-centered
Earth-fixed (ECEF) axes into a vector in north-east-down (NED) axes.
Geodetic latitudes and longitudes are output in degrees.

Examples Determine the geodetic latitude and longitude from direction cosine
matrix:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

[lat lon] = dcm2latlon(dcm)

lat =

44.9995

lon =

-122.0005

Determine the geodetic latitude and longitude from multiple direction
cosine matrices:

dcm = [0.3747 0.5997 0.7071; ...
0.8480 -0.5299 0; ...
0.3747 0.5997 -0.7071];

dcm(:,:,2) = [-0.0531 0.6064 0.7934; ...
0.9962 0.0872 0; ...

3-165

dcm2latlon

-0.0691 0.7903 -0.6088];
[lat lon] = dcm2latlon(dcm)

lat =

44.9995
37.5028

lon =

-122.0005
-84.9975

See Also angle2dcm | dcm2angle | dcmecef2ned

3-166

dcm2quat

Purpose Convert direction cosine matrix to quaternion

Syntax q = dcm2quat(n)

Description q = dcm2quat(n) calculates the quaternion, q, for a given direction
cosine matrix, n. Input n is a 3-by-3-by-m matrix of orthogonal direction
cosine matrices. The direction cosine matrix performs the coordinate
transformation of a vector in inertial axes to a vector in body axes. q
returns an m-by-4 matrix containing m quaternions. q has its scalar
number as the first column.

Examples Determine the quaternion from direction cosine matrix:

dcm = [0 1 0; 1 0 0; 0 0 1];
q = dcm2quat(dcm)

q =

0.7071 0 0 0

Determine the quaternions from multiple direction cosine matrices:

dcm = [0 1 0; 1 0 0; 0 0 1];
dcm(:,:,2) = [0.4330 0.2500 -0.8660; ...

0.1768 0.9186 0.3536; ...
0.8839 -0.3062 0.3536];

q = dcm2quat(dcm)

q =

0.7071 0 0 0
0.8224 0.2006 0.5320 0.0223

See Also angle2dcm | dcm2angle | angle2quat | quat2dcm | quat2angle

3-167

dcmbody2wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix

Syntax n = dcmbody2wind(a, b)

Description n = dcmbody2wind(a, b) calculates the direction cosine matrix, n, for
given angle of attack and sideslip angle, a, b. a is an m array of angles
of attack. b is an m array of sideslip angles. n returns a 3-by-3-by-m
matrix containing m direction cosine matrices. n performs the coordinate
transformation of a vector in body-axes into a vector in wind-axes.
Angles of attack and sideslip angles are input in radians.

Examples Determine the direction cosine matrix from angle of attack and sideslip
angle:

alpha = 0.4363;
beta = 0.1745;
dcm = dcmbody2wind(alpha, beta)

dcm =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

Determine the direction cosine matrix from multiple angles of attack
and sideslip angles:

alpha = [0.4363 0.1745];
beta = [0.1745 0.0873];
dcm = dcmbody2wind(alpha, beta)

dcm(:,:,1) =

0.8926 0.1736 0.4162
-0.1574 0.9848 -0.0734
-0.4226 0 0.9063

3-168

dcmbody2wind

dcm(:,:,2) =

0.9811 0.0872 0.1730
-0.0859 0.9962 -0.0151
-0.1736 0 0.9848

See Also angle2dcm | dcm2alphabeta | dcm2angle

3-169

dcmecef2ned

Purpose Convert geodetic latitude and longitude to direction cosine matrix

Syntax n = dcmecef2ned(lat, lon)

Description n = dcmecef2ned(lat, lon) calculates the direction cosine matrix, n,
for a given set of geodetic latitude and longitude, lat, lon. lat is an m
array of geodetic latitudes. lon is an m array of longitudes. n returns a
3-by-3-by-m matrix containing m direction cosine matrices. n performs
the coordinate transformation of a vector in Earth-centered Earth-fixed
(ECEF) axes into a vector in north-east-down (NED) axes. Geodetic
latitudes and longitudes are input in degrees.

Examples Determine the direction cosine matrix from geodetic latitude and
longitude:

lat = 45;
lon = -122;
dcm = dcmecef2ned(lat, lon)

dcm =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

Determine the direction cosine matrix from multiple geodetic latitudes
and longitudes:

lat = [45 37.5];
lon = [-122 -85];
dcm = dcmecef2ned(lat, lon)

dcm(:,:,1) =

0.3747 0.5997 0.7071
0.8480 -0.5299 0
0.3747 0.5997 -0.7071

3-170

dcmecef2ned

dcm(:,:,2) =

-0.0531 0.6064 0.7934
0.9962 0.0872 0

-0.0691 0.7903 -0.6088

See Also angle2dcm | dcm2angle | dcm2latlon

3-171

dcmeci2ecef

Purpose Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed
(ECEF) coordinates

Syntax dcm=dcmeci2ecef(reduction,utc)

dcm=dcmeci2ecef(reduction,utc,deltaAT)

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1)

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion)

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion,
Name,Value)

Description dcm=dcmeci2ecef(reduction,utc) calculates the position direction
cosine matrix (ECI to ECEF) as a 3-by-3-by-M array. The calculation
is based on the specified reduction method and Universal Coordinated
Time (UTC).

dcm=dcmeci2ecef(reduction,utc,deltaAT) uses the difference
between International Atomic Time and UTC to calculate the position
direction cosine matrix.

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1) uses the
difference between UTC and Universal Time (UT1).

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion)
uses the polar displacement.

dcm=dcmeci2ecef(reduction,utc,deltaAT,deltaUT1,polarmotion,
Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

reduction - Reduction method
'IAU-76/FK5' | 'IAU-2000/2006'

Reduction method to calculate the direction cosine matrix, specified as
one of the following:

3-172

dcmeci2ecef

• IAU-76/FK5

Reduce the calculation using the International Astronomical
Union (IAU)-76/Fifth Fundamental Catalogue (FK5) (IAU-76/FK5)
reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5. You can use the
'dNutation' Name,Value pair with this reduction.

Note This method uses the IAU 1976 precession model and the
IAU 1980 theory of nutation to reduce the calculation. This model
and theory are no longer current, but the software provides this
reduction method for existing implementations. Because of the polar
motion approximation that this reduction method uses, dcmeci2ecef
calculates the transformation matrix rather than the direction cosine
matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union
(IAU)-2000/2005 reference system. Choose this reduction method
if the reference coordinate system for the conversion is IAU-2000.
This reduction method uses the P03 precession model to reduce the
calculation. You can use the 'dCIP' Name,Value pair with this
reduction.

utc - Universal Coordinated Time
1-by-6 array | M-by-6 matrix

Universal Coordinated Time (UTC) in the order year, month, day, hour,
minutes, and seconds, for which the function calculates the direction
cosine matrix, specified as one of the following.

• For the year value, enter a double value that is a whole number
greater than 1, such as 2013.

• For the month value, enter a double value that is a whole number
greater than 0, within the range 1 to 12.

3-173

dcmeci2ecef

• For the hour value, enter a double value that is a whole number
greater than 0, within the range 1 to 24.

• For the hour value, enter a double value that is a whole number
greater than 0, within the range 1 to 60.

• For the minute and second values, enter a double value that is a
whole number greater than 0, within the range 1 to 60.

Specify these values in one of the following formats:

• 1-by-6 array

Specify a 1-row-by-6-column array of UTC values to calculate one
direction cosine or transformation matrix.

• M-by-6 matrix

Specify an M-by-6 array of UTC values, where M is the number of
direction cosine or transformation matrices to calculate. Each row
corresponds to one set of UTC values.

Example: [2000 1 12 4 52 12.4]

This is a one row-by-6 column array of UTC values.

Example: [2000 1 12 4 52 12.4;2010 6 5 7 22 0]

This is an M-by-6 array of UTC values, where M is 2.

Data Types
double

deltaAT - Difference between International Atomic Time and UTC
scalar | one-dimensional array

Difference between International Atomic Time (IAT) and UTC, in
seconds, for which the function calculates the direction cosine or
transformation matrix. By default, the function assumes an M-by-1
array of zeroes.

• scalar

3-174

dcmeci2ecef

Specify one difference-time value to calculate one direction cosine
or transformation matrix.

• one-dimensional array

Specify a one-dimensional array with M elements, where M is the
number of direction cosine or transformation matrices to calculate.
Each row corresponds to one set of UTC values.

Example: 32

Specify 32 seconds as the difference between IAT and UTC.

Data Types
double

deltaUT1 - Difference between UTC and Universal Time (UT1)
scalar | one-dimensional array

Difference between UTC and Universal Time (UT1) in seconds, for
which the function calculates the direction cosine or transformation
matrix. By default, the function assumes an M-by-1 array of zeroes.

• scalar

Specify one difference-time value to calculate one direction cosine
or transformation matrix.

• one-dimensional array

Specify a one-dimensional array with M elements of difference time
values, where M is the number of direction cosine or transformation
matrices to be calculated. Each row corresponds to one set of UTC
values.

Example: 0.234

Specify 0.234 seconds as the difference between UTC and UT1.

Data Types
double

polarmotion - Polar displacement

3-175

dcmeci2ecef

1-by-2 array | M-by-2 array

Polar displacement of the Earth, in radians, from the motion of the
Earth crust, along the x- and y-axes. By default, the function assumes
an M-by-2 array of zeroes.

• 1-by-2 array

Specify a 1-by-2 array of the polar displacement values to convert one
direction cosine or transformation matrix.

• M-by-2 array

Specify an M-by-2 array of polar displacement values, whereM is the
number of direction cosine or transformation matrices to convert.
Each row corresponds to one set of UTC values.

Example: [-0.0682e-5 0.1616e-5]

Data Types
double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’dNutation’ - Adjustment to longitude (dDeltaPsi) and obliquity
(dDeltaEpsilon)
M-by-2 array

Adjustment to the longitude (dDeltaPsi) and obliquity (dDeltaEpsilon),
in radians, as the comma-separated pair consisting of dNutation and
an M-by-2 array. Use this Name,Value pair with the IAU-76/FK5
reduction. By default, the function assumes an M-by-2 array of zeroes.

For historical values, see the International Earth Rotation and
Reference Systems Service Web site (http://www.iers.org) and
navigate to the Earth Orientation Data Data/Products page.

3-176

http://www.iers.org

dcmeci2ecef

• M-by-2 array

Specify M-by-2 array of adjustment values, where M is the number
of direction cosine or transformation matrices to be converted. Each
row corresponds to one set of longitude and obliquity values.

Example: [-0.2530e-6 -0.0188e-6]

Data Types
double

’dCIP’ - Adjustment to the location of the Celestial Intermediate
Pole (CIP)
M-by-2 array

Adjustment to the location of the Celestial Intermediate Pole (CIP), in
radians, specified as the comma-separated pair consisting of dCIP and
an M-by-2 array. This location (dDeltaX, dDeltaY) is along the x- and y-
axes. Use this argument with the IAU-200/2006 reduction. By default,
this function assumes an M-by-2 array of zeroes.

For historical values, see the International Earth Rotation and
Reference Systems Service Web site (http://www.iers.org) and
navigate to the Earth Orientation Data Data/Products page.

• M-by-2 array

Specify M-by-2 array of location adjustment values, where M is
the number of direction cosine or transformation matrices to be
converted. Each row corresponds to one set of dDeltaX and dDeltaY
values.

Example: [-0.2530e-6 -0.0188e-6]

Data Types
double

Output
Arguments

dcm - Direction cosine or transformation matrix
3-by-3-M array

Direction cosine or transformation matrix, returned as a 3-by-3-M array.

3-177

http://www.iers.org

dcmeci2ecef

Examples Convert using IAU-2000/2006 reduction

Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed
(ECEF) coordinates for January 12, 2000 at 4 hours, 52 minutes, 12.4
seconds and January 12, 2000 at 4 hours, 52 minutes, and 13 seconds.
Specify only the reduction method and UTC.

dcm = dcmeci2ecef('IAU-2000/2006',[2000 1 12 4 52 12.4;2000 1 12 4 52 13])

dcm(:,:,1) =

-0.9975 -0.0708 0.0000
0.0708 -0.9975 0.0000
0.0000 0.0000 1.0000

dcm(:,:,2) =

-0.9975 -0.0709 0.0000
0.0709 -0.9975 0.0000
0.0000 0.0000 1.0000

Convert using IAU-76/FK5 reduction

Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed
(ECEF) coordinates for January 12, 2000 at 4 hours, 52 minutes, 12.4
seconds. Specify all arguments, including optional ones such as polar
motion.

dcm = dcmeci2ecef('IAU-76/FK5',[2000 1 12 4 52 12.4],32,0.234,[0.245 0.3418],'dNutation', ...

[0.00013 0.00024])

dcm =

-0.9975 -0.0707 0.2450
0.0707 -0.9976 -0.3416
0.2686 -0.3234 1.0001

See Also ecef2lla | geoc2geod | geod2geoc | lla2ecef

3-178

dcmeci2ecef

Concepts http://www.iers.org

3-179

http://www.iers.org

decyear

Purpose Decimal year calculator

Syntax dy = decyear(v)
dy = decyear(s,f)
dy = decyear(y,mo,d)
dy = decyear([y,mo,d])
dy = decyear(y,mo,d,h,mi,s)
dy = decyear([y,mo,d,h,mi,s])

Description dy = decyear(v) converts one or more date vectors, v, into decimal
year, dy. Input v can be an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. decyear returns a column vector
of m decimal years.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

dy = decyear(s,f) converts one or more date strings, s, to decimal
year, dy, using format string f. s can be a character array, where each
row corresponds to one date string, or a one-dimensional cell array of
strings. decyear returns a column vector of m decimal years, where m is
the number of strings in s.

All of the date strings in s must have the same format f, composed of
the same date format symbols as the datestr function. decyear does
not accept formats containing the letter Q.

If a format does not contain enough information to compute a date
number, then:

• Hours, minutes, and seconds default to 0.

• Days default to 1.

• Months default to January.

• Years default to the current year.

3-180

decyear

Date strings with two-character years are interpreted to be within 100
years of the current year.

dy = decyear(y,mo,d) and dy = decyear([y,mo,d]) return the
decimal year for corresponding elements of the y,mo,d (year,month,day)
arrays. Specify y, mo, and d as one-dimensional arrays of the same
length or scalar values.

dy = decyear(y,mo,d,h,mi,s) and dy = decyear([y,mo,d,h,mi,s])
return the decimal year for corresponding elements of the
y,mo,d,h,mi,s (year,month,day,hour,minute,second) arrays. Specify
the six arguments as one-dimensional arrays of the same length or
scalar values.

Examples Calculate decimal year for May 24, 2005:

dy = decyear('24-May-2005','dd-mmm-yyyy')

dy =

2.0054e+003

Calculate decimal year for December 19, 2006:

dy = decyear(2006,12,19)

dy =

2.0070e+003

Calculate decimal year for October 10, 2004, at 12:21:00 p.m.:

dy = decyear(2004,10,10,12,21,0)

dy =

2.0048e+003

3-181

decyear

Assumptions
and
Limitations

The calculation of decimal year does not take into account leap seconds.

See Also juliandate | leapyear | mjuliandate

3-182

Aero.Animation.delete

Purpose Destroy animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the animation object h. This function
also destroys the animation object figure, and any objects that the
animation object contained (for example, bodies, camera, and geometry).

Input
Arguments

h Animation object.

Examples Delete the animation object, h.

h=Aero.Animation;
h.delete;

3-183

delete (Aero.FlightGearAnimation)

Purpose Destroy FlightGear animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the FlightGear animation object h.
This function also destroys the animation object timer, and closes the
socket that the FlightGear animation animation object contains.

Examples Delete the FlightGear animation object, h.

h=Aero.FlightGearAnimation;
h.delete;

See Also initialize

3-184

delete (Aero.VirtualRealityAnimation)

Purpose Destroy virtual reality animation object

Syntax delete(h)
h.delete

Description delete(h) and h.delete destroy the virtual reality animation object
h. This function also destroys the temporary file, if it exists, cleans up
the vrfigure object, the animation object timer, and closes the vrworld
object.

Examples Delete the virtual reality animation object, h.

h=Aero.VirtualRealityAnimation;
h.delete;

See Also initialize

3-185

dpressure

Purpose Compute dynamic pressure using velocity and density

Syntax q = dpressure(v, r)

Description q = dpressure(v, r) computes m dynamic pressures, q, from an m-by-3
array of velocities, v, and an array of m densities, r. v and r must have
the same length units.

Examples Determine dynamic pressure for velocity in feet per second and density
in slugs per feet cubed:

q = dpressure([84.3905 33.7562 10.1269], 0.0024)

q =

10.0365

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([25.7222 10.2889 3.0867], [1.225 0.3639])

q =

475.9252
141.3789

Determine dynamic pressure for velocity in meters per second and
density in kilograms per meters cubed:

q = dpressure([50 20 6; 5 0.5 2], [1.225 0.3639])

q =

3-186

dpressure

1.0e+003 *

1.7983
0.0053

See Also airspeed | machnumber

3-187

earthNutation

Purpose Implement Earth nutation

Syntax angles= earthNutation(ephemerisTime)

angles= earthNutation(ephemerisTime,ephemerisModel)

angles= earthNutation(ephemerisTime,ephemerisModel,action)

[angles,rates] = earthNutation(___)

Description angles= earthNutation(ephemerisTime) implements the
International Astronomical Union (IAU) 1980 nutation series. It
returns angles.

The function uses the Chebyshev coefficients that the NASA Jet
Propulsion Laboratory provides.

angles= earthNutation(ephemerisTime,ephemerisModel) uses the
ephemerisModel coefficients to implement these values.

angles= earthNutation(ephemerisTime,ephemerisModel,action)
uses action to determine error reporting.

[angles,rates] = earthNutation(___) implements the
International Astronomical Union (IAU) 1980 nutation series using
any combination of the input arguments in the previous syntaxes. It
returns angles and angular rates.

Input
Arguments

ephemerisTime - Julian date
scalar | 2-element vector | column vector | M-by-2 matrix

Julian dates for which the positions are calculated, specified as one
of the following:

• Scalar

Specify one fixed Julian date.

• 2-element vector

3-188

earthNutation

Specify the Julian date in multiple parts. The first element is the
Julian date for a specific epoch that is the most recent midnight at or
before the interpolation epoch. The second element is the fractional
part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus
the second element cannot exceed the maximum Julian date.

• Column vector

Specify a column vector with M elements, where M is the number of
fixed Julian dates.

• M-by-2 matrix

Specify a matrix, where M is the number of Julian dates and the
second column contains the elapsed days (Julian epoch date/elapsed
day pairs).

Data Types
double

ephemerisModel - Ephemerides coefficients
`405' (default) | '421' | '423'

Ephemerides coefficients, specified as one of these ephemerides defined
by the Jet Propulsion Laboratory:

• '405'

Released in 1998. This ephemerides takes into account the Julian
date range 2305424.50 (December 9, 1599) to 2525008.50 (February
20, 2201).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

• '421'

Released in 2008. This ephemerides takes into account the Julian
date range 2414992.5 (December 4, 1899) to 2469808.5 (January
2, 2050).

3-189

earthNutation

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

• '423'

Released in 2010. This ephemerides takes into account the Julian
date range 2378480.5 (December 16, 1799) to 2524624.5 (February
1, 2200).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 2.0, adopted in 2010.

Data Types
char

action - Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as one of
these values:

Value Description

'None' No action.

'Warning' Warning in the MATLAB Command Window,
model simulation continues.

'Error' MATLAB returns an exception, model
simulation stops.

Data Types
char

Output
Arguments

angles - Earth nutation angles
M-by-2 vector

Earth nutation angles, returned as an M-by-2 vector, where M is
the number of Julian dates. The 2 vector contains the d(psi) and
d(epsilon) angles, in radians. The input arguments include multiple

3-190

earthNutation

Julian dates or epochs. The vector has the same number of rows as
the ephemerisTime input.

rates - Earth nutation angular rates
M-by-2 vector

Earth nutation angular rates, returned as an M-by-2 vector, where M
is the number of Julian dates. The 2 vector contains the d(psi) and
d(epsilon) angular rate, in radians/day. The input arguments include
multiple Julian dates or epochs. The vector has the same number of
rows as the ephemerisTime input.

Examples Implement Earth Nutation Angles

Implement Earth nutation angles for December 1, 1990. Because no
ephemerides model is specified, the default, DE405, is used. Use the
juliandate function to specify the Julian date.

angles = earthNutation(juliandate(1990,12,1))

angles =
1.0e-04 *
0.6448 0.2083

Implement Earth Nutation Angles and Angular Rates

Implement Earth nutation angles and angular rates for noon on
January 1, 2000 using DE421:

[angles,rates] = earthNutation([2451544.5 0.5],'421')

angles =
1.0e-04 *
-0.6750 -0.2799

rates =
1.0e-07 *
0.3687 -0.9937

3-191

earthNutation

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs, “The Planetary and
Lunar Ephemeris DE 421,” JPL Interplanetary Network Progress
Report 24-178, 2009.

[2] Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

See Also juliandate | moonLibration | planetEphemeris

External
Web Sites

• http://ssd.jpl.nasa.gov/?planet_eph_export

3-192

http://ssd.jpl.nasa.gov/?planet_eph_export

ecef2lla

Purpose Convert Earth-centered Earth-fixed (ECEF) coordinates to geodetic
coordinates

Syntax lla = ecef2lla(p)
lla = ecef2lla(p, model)
lla = ecef2lla(p, f, Re)

Description lla = ecef2lla(p) converts the m-by-3 array of ECEF coordinates,
p, to an m-by-3 array of geodetic coordinates (latitude, longitude and
altitude), lla. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

lla = ecef2lla(p, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

lla = ecef2lla(p, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine latitude, longitude, and altitude at a coordinate:

lla = ecef2lla([4510731 4510731 0])

lla =

0 45.0000 999.9564

Determine latitude, longitude, and altitude at multiple coordinates,
specifying WGS84 ellipsoid model:

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], 'WGS84')

lla =

0 45.0000 999.9564

3-193

ecef2lla

45.1358 90.0000 999.8659

Determine latitude, longitude, and altitude at multiple coordinates,
specifying custom ellipsoid model:

f = 1/196.877360;

Re = 3397000;

lla = ecef2lla([4510731 4510731 0; 0 4507609 4498719], f, Re)

lla =

1.0e+006 *

0 0.0000 2.9821

0.0000 0.0001 2.9801

See Also geoc2geod | geod2geoc | lla2ecef

3-194

fganimation (Aero.FlightGearAnimation)

Purpose Construct FlightGear animation object

Syntax h = fganimation
h = Aero.FlightGearAnimation

Description h = fganimation and h = Aero.FlightGearAnimation construct
a FlightGear animation object. The FlightGear animation object is
returned to h.

Examples Construct a FlightGear animation object, h:

h = fganimation

See Also Aero.FlightGearAnimation

3-195

findstartstoptimes (Aero.Body)

Purpose Return start and stop times of time series data

Syntax [tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description [tstart,tstop] = findstartstoptimes(h,tsdata) and
[tstart,stop] = h.findstartstoptimes(tsdata) return the start
and stop times of time series data tsdata for the animation body object
h.

Examples Find the start and stop times of the time series data, tsdata.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
tsdata = [...

0, 1,1,1, 0,0,0; ...
10 2,2,2, 1,1,1;];

b.TimeSeriesSource = tsdata;
[tstart,tstop] = findstartstoptimes(b,tsdata);

See Also load

3-196

findstartstoptimes (Aero.Node)

Purpose Return start and stop times for time series data

Syntax [tstart,tstop] = findstartstoptimes(h,tsdata)
[tstart,stop] = h.findstartstoptimes(tsdata)

Description [tstart,tstop] = findstartstoptimes(h,tsdata) and
[tstart,stop] = h.findstartstoptimes(tsdata) return the start
and stop times of time series data tsdata for the virtual reality
animation object h.

Examples Find the start and stop times of the time series data, takeoffData.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData;

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWith Time';

[tstart,stop]=h.Nodes{7}.findstartstoptimes;

3-197

flat2lla

Purpose Estimate array of geodetic latitude, longitude, and altitude coordinates
from flat Earth position

Syntax lla = flat2lla(flatearth_pos, llo, psio, href)
lla = flat2lla(flatearth_pos, llo, psio, href,

ellipsoidModel)
lla = flat2lla(flatearth_pos, llo, psio, href, flattening,

equatorialRadius)

Description lla = flat2lla(flatearth_pos, llo, psio, href) estimates
an array of geodetic coordinates, lla, from an array of flat Earth
coordinates, flatearth_pos. This function estimates the lla value
with respect to a reference location that llo, psio, and href define.

lla = flat2lla(flatearth_pos, llo, psio, href,
ellipsoidModel) estimates the coordinates for a specific ellipsoid
planet.

lla = flat2lla(flatearth_pos, llo, psio, href, flattening,
equatorialRadius) estimates the coordinates for a custom ellipsoid
planet defined by flattening and equatorialRadius.

Input
Arguments

flatearth_pos

Flat Earth position coordinates, in meters.

llo

Reference location, in degrees, of latitude and longitude, for the origin
of the estimation and the origin of the flat Earth coordinate system.

psio

Angular direction of flat Earth x-axis (degrees clockwise from north),
which is the angle in degrees used for converting flat Earth x and y
coordinates to North and East coordinates.

href

3-198

flat2lla

Reference height from the surface of the Earth to the flat Earth frame
with regard to the flat Earth frame, in meters.

ellipsoidModel

String that specifies the specific ellipsoid planet model. This function
supports only 'WGS84'.

Default: WGS84

flattening

Custom ellipsoid planet defined by flattening.

equatorialRadius

Planetary equatorial radius, in meters.

Output
Arguments

lla

m-by-3 array of geodetic coordinates (latitude, longitude, and altitude),
in [degrees, degrees, meters].

Examples Estimate latitude, longitude, and altitude at a specified coordinate:

lla = flat2lla([4731 4511 120], [0 45], 5, -100)

lla =

0.0391 45.0441 -20.0000

Estimate latitudes, longitudes, and altitudes at multiple coordinates,
specifying the WGS84 ellipsoid model:

lla = flat2lla([4731 4511 120; 0 5074 4498], [0 45], 5, -100, 'WGS84')

lla =

3-199

flat2lla

1.0e+003 *

0.0000 0.0450 -0.0200

-0.0000 0.0450 -4.3980

Estimate latitudes, longitudes, and altitudes at multiple coordinates,
specifying a custom ellipsoid model:

f = 1/196.877360;

Re = 3397000;

lla = flat2lla([4731 4511 120; 0 5074 4498], [0 45], 5, -100, f, Re)

lla =

1.0e+003 *

0.0001 0.0451 -0.0200

-0.0000 0.0451 -4.3980

Algorithms The estimation begins by transforming the flat Earth x and y coordinates
to North and East coordinates. The transformation has the form of

N
E

p
p

x

y

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

cos sin
sin cos

 
 

where () is the angle in degrees clockwise between the x-axis and
north.

To convert the North and East coordinates to geodetic latitude and
longitude, the estimation uses the radius of curvature in the prime
vertical (RN) and the radius of curvature in the meridian (RM). (RN) and
(RM) are defined by the following relationships:

3-200

flat2lla

R
R

f f

R R
f f

f f

N

M N

=
− −

= − −
− −

1 2

1 2

1 2

2 2
0

2

2 2
0

()sin

()

()sin





where (R) is the equatorial radius of the planet and f() is the flattening
of the planet.

Small changes in the latitude and longitude are approximated from
small changes in the North and East positions by

d
R

dN

d
R

dE

M

N






=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

atan

atan

1

1
cos

The output latitude and longitude are the initial latitude and longitude
plus the small changes in latitude and longitude.

  
  

= +
= +

0

0

d

d

The altitude is the negative flat Earth z-axis value minus the reference
height (href).

h p hz ref= − −

References Etkin, B., Dynamics of Atmospheric Flight. NewYork: John Wiley &
Sons, 1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd
ed. New York: John Wiley & Sons, 2003.

3-201

flat2lla

See Also lla2flat

3-202

flowfanno

Purpose Fanno line flow relations

Syntax [mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma,
fanno_flow, mtype)

Description [mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma,
fanno_flow, mtype) returns an array for each Fanno line flow
relation. This function calculates the arrays for a given set of specific
heat ratios (gamma), and any one of the Fanno flow types. You select
the Fanno flow type with mtype.

This function uses Fanno variables given by the following. F is the
Fanno parameter given by F = f*L/D. f is the friction coefficient. L is
the length of constant area duct required to achieve sonic flow. D is
the hydraulic diameter of the duct.

This function assumes that variables vary in one dimension only. It also
assumes that the main mechanism for the change of flow variables is
the change of cross-sectional area of the flow stream tubes.

If the temperature experiences large fluctuations, the perfect gas
assumption might be invalid. If the stagnation temperature is above
1500 K, do not assume constant specific heats. In this case, the medium
ceases to be a calorically perfect gas. Consider it a thermally perfect gas.
See 2 for thermally perfect gas correction factors. If the temperature is
so high that molecules dissociate and ionize (static temperature 5000 K
for air), you cannot assume a perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or an array
of N real numbers greater than 1. gamma must be a real, finite scalar
greater than 1 for the following input modes: subsonic total pressure
ratio, supersonic total pressure ratio, subsonic Fanno parameter, and
supersonic Fanno parameter.

fanno_flow

3-203

flowfanno

Array of real numerical values for one Fanno flow. This argument can
be one of the following:

• Array of Mach numbers. flow_fanno must be a scalar or an array of
N real numbers greater than or equal to 0. If flow_fanno and gamma
are arrays, they must be the same size.

Use flow_fanno with the mtype value 'mach'. Because 'mach' is the
default of mtype, mtype is optional when this array is the input mode.

• Array of temperature ratios. The temperature ratio is the local static
temperature over the reference static temperature for sonic flow.
This array must be a scalar or array of N real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to (gamma+1)/2 (at Mach number equal 0)

Use flow_fanno with mtype value 'temp'.

• Array of pressure ratios. The pressure ratio is the local static
pressure over the reference static pressure for sonic flow. flow_fanno
must be a scalar or array of real numbers greater than or equal to 0.
If flow_fanno and gamma are arrays, they must be the same size.

Use flow_fanno with mtype value 'pres'.

• Array of density ratios. The density ratio is the local density over the
reference density for sonic flow. flow_fannomust be a scalar or array
of real numbers. These numbers must be greater than or equal to:

sqrt((gamma-1)/(gamma+1)) (as the Mach number approaches infinity).

If flow_fanno and gamma are arrays, they must be the same size.

Use flow_fanno with mtype value 'dens'.

• Array of velocity ratios. The velocity ratio is the local velocity over
the reference velocity for sonic flow. flow_fanno must be a scalar
or an array of N of real numbers:

- Greater than or equal to 0

3-204

flowfanno

- Less than or equal to sqrt((gamma+1)/(gamma-1)) (as the Mach
number approaches infinity)

If flow_fanno and gamma are both arrays, they must be the same size.

Use flow_fanno with mtype value 'velo'.

• Scalar value of total pressure ratio. The total pressure ratio is the
local total pressure over the reference total pressure for sonic flow.
flow_fanno must be greater than or equal to 1.

Use flow_fanno with mtype values 'totalp' and 'totalpsup'.

• Scalar value for Fanno parameter. The Fanno parameter is
flow_fanno= f*L/D. f is the friction coefficient. L is the length of
constant area duct required to achieve sonic flow. D is the hydraulic
diameter of the duct. In subsonic mode, flow_fanno must be greater
than or equal to 0. In supersonic mode, flow_fanno must be:

- Greater than or equal to 0 (at Mach number equal 1)

- Less than or equal to
(gamma+1)/(2*gamma)*log((gamma+1)/(gamma-1))-1/gamma (as Mach
number approaches infinity)

Use flow_fanno with mtype values 'fannosub' and 'fannosup'.

mtype

A string that defines the input mode for the type of Fanno flow in
fanno_flow.

Type Description

'mach' Default Mach number

'temp' Temperature ratio

'pres' Pressure ratio

'dens' Density ratio

'velo' Velocity ratio

3-205

flowfanno

Type Description

'totalpsub' Subsonic total pressure ratio

'totalpsup' Supersonic total pressure ratio

'fannosub' Subsonic Fanno parameter

'fannosup' Supersonic Fanno parameter

Output
Arguments

All outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local static
temperature over the reference static temperature for sonic flow.

P

Array of pressure ratios. The pressure ratio is the local static pressure
over the reference static pressure for sonic flow.

rho

Array of density ratio. The density ratio is the local density over the
reference density for sonic flow.

velocity

Array of velocity ratios. The velocity ratio is the local velocity over the
reference velocity for sonic flow.

P0

Array of stagnation (total) pressure ratio. The total pressure ratio is the
local total pressure over the reference total pressure for sonic flow.

3-206

flowfanno

fanno

Array of Fanno parameters. The Fanno parameter is F = f*L/D. f is the
friction coefficient. L is the length of constant area duct required to
achieve sonic flow. D is the hydraulic diameter of the duct.

Examples Calculate the Fanno line flow relations for air (gamma = 1.4) for subsonic
Fanno parameter 1.2. The following returns scalar values for mach, T,
P, rho, velocity, P0, and fanno.

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(1.4, 1.2, 'fannosub')

Calculate the Fanno line flow relations for gases with specific heat
ratios given in the following 1 x 4 row array for the Mach number 0.5.
The following yields a 1 x 4 row array for mach, T, P, rho, velocity,
P0, and fanno.

gamma = [1.3, 1.33, 1.4, 1.67];

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(gamma, 0.5)

Calculate the Fanno line flow relations for a specific heat ratio of 1.4
and range of temperature ratios from 0.40 to 0.70 in increments of
0.10. The following returns a 4 x 1 column array for mach, T, P, rho,
velocity, P0, and fanno.

[mach, T, P, rho, velocity, P0, fanno] = flowfanno(1.4, [1.1 1.2], 'temp')

Calculate the Fanno line flow relations for gases with specific heat ratio
and velocity ratio combinations as shown. The following returns a 1 x 2
array for mach, T, P, rho, velocity, P0, and fanno each. The elements
of each array correspond to the inputs element-wise.

gamma = [1.3, 1.4];
V = [0.53, 0.49];

3-207

flowfanno

[MACH, T, P, RHO, V, P0, F] = flowfanno(gamma, V, 'velo')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowprandtlmeyer |
flowrayleigh

3-208

flowisentropic

Purpose Isentropic flow ratios

Syntax [mach, T, P, rho, area] = flowisentropic(gamma,
flow, mtype)

Description [mach, T, P, rho, area] = flowisentropic(gamma, flow,
mtype) returns an array. This array contains an isentropic flow Mach
number (mach), temperature ratio (T), pressure ratio (P), density ratio
(rho), and area ratio (area). This function calculates these arrays given
a set of specific heat ratios (gamma), and any one of the isentropic flow
types. You select the isentropic flow with mtype.

This function assumes that variables vary in one dimension only. It also
assumes that the main mechanism for the change of flow variables is
the change of cross-sectional area of the flow stream tubes.

This function assumes that the environment is a perfect gas. In
the following instances, the function cannot assume a perfect gas
environment. If there is a large change in either temperature or
pressure without a proportionally large change in the other, the
function cannot assume a perfect gas environment. . If the stagnation
temperature is above 1500 K, do not assume that constant specific
heats. In this case, the medium ceases to be a calorically perfect
gas. Consider it a thermally perfect gas. See 2 for thermally perfect
gas correction factors. If the temperature is so high that molecules
dissociate and ionize (static temperature 5000 K for air), you cannot
assume a calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be a scalar or array of N
real numbers greater than 1. For subsonic area ratio input mode and
supersonic area ratio input mode, gamma must be a real, finite scalar
greater than 1.

flow

3-209

flowisentropic

Array of real numerical values for one of the isentropic flow relations.
This argument can be one of the following:

• Array of Mach numbers. flow must be a scalar or an array of N real
numbers greater than or equal to 0. If flow and gamma are arrays,
they must be the same size.

Use flow with the mtype value 'mach'. Because 'mach' is the default
of mtype, mtype is optional when this array is the input mode.

• Array of temperature ratios. The temperature ratio is the local static
temperature over the stagnation temperature. flow must be a scalar
or an array of real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the same size.

Use flow with mtype value 'temp'.

• Array of pressure ratios. The pressure ratio is the local static
pressure over the stagnation pressure. flow must be a scalar or an
array of real numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

If flow and gamma are both arrays, they must be the same size.

Use flow with mtype value 'pres'.

• Array of density ratios. The density ratio is the local density over
the stagnation density. flow must be a scalar or an array of real
numbers:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 0)

3-210

flowisentropic

If flow and gamma are both arrays, they must be the same size.

Use flow with mtype value 'dens'.

• Scalar value of area ratio. flow must be a real value greater than or
equal to 1.

Use flow with mtype value 'sup'.

mtype

A string that defines the input mode for the isentropic flow in flow.

Type Description

'mach' Default. Mach number.

'temp' Temperature ratio.

'pres' Pressure ratio.

'dens' Density ratio.

'sub' Subsonic area ratio. The subsonic area ratio is the local
subsonic stream tube area over the reference stream tube
area for sonic conditions.

'sup' Supersonic area ratio. The supersonic area ratio is the
local supersonic stream tube area over the reference
stream tube area for sonic conditions.

Output
Arguments

All outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local static
temperature over the stagnation temperature.

3-211

flowisentropic

P

Array of pressure ratios. The pressure ratio is the local static pressure
over the stagnation pressure.

rho

Array of density ratios. The density ratio is the local density over the
stagnation density.

area

Array of area ratios. The area ratio is the local stream tube area over
the reference stream tube area for sonic conditions.

Examples Calculate the isentropic flow relations for air (gamma = 1.4) for a design
subsonic area ratio of 1.255. This example returns scalar values for
mach, T, P, rho, and area.

[mach, T, P, rho, area] = flowisentropic(1.4, 1.255, 'sub')

Calculate the isentropic flow relations for gases with specific heat ratios
given in the following 1 x 4 row array for the Mach number 0.5. This
example following returns a 1 x 4 row array for mach, T, P, rho, and area.

gamma = [1.3, 1.33, 1.4, 1.67];
[mach, T, P, rho, area] = flowisentropic(gamma, 0.5)

Calculate the isentropic flow relations for a specific heat ratio of
1.4. Also calculate range of temperature ratios from 0.40 to 0.70 in
increments of 0.10. This example returns a 4 x 1 column array for mach,
T, P, rho, and area.

[mach, T, P, rho, area] = flowisentropic(1.4, (0.40:0.10:0.70)', 'temp')

3-212

flowisentropic

Calculate the isentropic flow relations for gases with provided specific
heat ratio and density ratio combinations. This example returns a 1 x 2
array for mach, T, P, rho, and area each. The elements of each vector
correspond to the inputs element-wise.

gamma = [1.3, 1.4];

rho = [0.13, 0.9];

[mach, T, P, rho, area] = flowisentropic(gamma, rho , 'dens')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flownormalshock | flowprandtlmeyer | flowfanno | flowrayleigh

3-213

flownormalshock

Purpose Normal shock relations

Syntax [mach, T, P, rho, downstream_mach, P0,
P1] = flownormalshock(gamma, normal_shock_relations,
mtype)

Description [mach, T, P, rho, downstream_mach, P0, P1] =
flownormalshock(gamma, normal_shock_relations,
mtype) produces an array for each normal shock relation
(normal_shock_relations). This function calculates these arrays for
a given set of specific heat ratios (gamma) and any one of the normal
shock relations (normal_shock_relations). mtype selects the normal
shock relations that normal_shock_relations represents. All ratios
are downstream value over upstream value. Consider upstream to be
before or ahead of the shock; downstream is after or behind the shock.

This function assumes that the medium is a calorically perfect gas. It
assumes that the flow is frictionless and adiabatic. It assumes that
the flow variables vary in one dimension only. It assumes that the
main mechanism for the change of flow variables is the change of
cross-sectional area of the flow stream tubes.

If the temperature experiences large fluctuations, the perfect gas
assumption might be invalid. If the stagnation temperature is above
1500 K, do not assume constant specific heats. In this case, the medium
ceases to be a calorically perfect gas. You must then consider it a
thermally perfect gas. See 2 for thermally perfect gas correction factors.
If the temperature is so high that molecules dissociate and ionize (static
temperature 5000 K for air), you cannot assume a perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or an array
of N real numbers greater than 1. For temperature ratio, total pressure
ratio, and Rayleigh-Pitot ratio input modes, gamma must be a real, finite
scalar greater than 1.

normal_shock_relations

3-214

flownormalshock

Array of real numerical values for one of the normal shock relations.
This argument can be one of the following:

• Array of upstream Mach numbers. This array must be a scalar
or an array of N real numbers greater than or equal to 1. If
normal_shock_relations and gamma are arrays, they must be the
same size.

Use normal_shock_relations with mtype value 'mach'. Because
'mach' is the default of mtype, mtype is optional when this array
is the input mode.

• Scalar value of temperature ratio. The temperature ratio is the static
temperature downstream of the shock over the static temperature
upstream of the shock. normal_shock_relations must be a real
scalar greater than or equal to 1.

Use normal_shock_relations with mtype value 'temp'.

• Array of pressure ratios. The pressure ratio is the static pressure
downstream of the shock over the static pressure upstream of the
shock. normal_shock_relations must be a scalar or array of real
numbers greater than or equal to 1. If normal_shock_relations and
gamma are arrays, they must be the same size.

Use normal_shock_relations with mtype value 'pres'.

• Array of density ratios. The density ratio is the density of the fluid
downstream of the shock over the density upstream of the shock.
normal_shock_relations must a scalar or array of real numbers be:

- Greater than or equal to 1 (at Mach number equal 1)

- Less than or equal to (gamma+1)/(gamma-1) (as the Mach number
approaches infinity)

If normal_shock_relations and gamma are arrays, they must be the
same size. Use normal_shock_relations with mtype value 'dens'.

• Array of downstream Mach numbers. normal_shock_relations
must be scalar or array of real numbers:

3-215

flownormalshock

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to sqrt((gamma-1)/(2*gamma)) (at Mach number
equal 1)

If normal_shock_relations and gamma are arrays, they must be the
same size. Use normal_shock_relations with mtype value 'down'.

• Scalar value of total pressure ratio. The total pressure ratio is the
total pressure downstream of the shock over the total pressure
upstream of the shock. normal_shock_relations must be:

- Greater than or equal to 0 (as the Mach number approaches
infinity)

- Less than or equal to 1 (at Mach number equal 1)

If normal_shock_relations and gamma are both arrays, they must
be the same size. Use normal_shock_relations with mtype value
'totalp'.

• Scalar value of Rayleigh-Pitot ratio. The Rayleigh-Pitot ratio is
the static pressure upstream of the shock over the total pressure
downstream of the shock. normal_shock_relations must be:

- Real scalar greater than or equal to 0 (as the Mach number
approaches infinity)

- Less than or equal to ((gamma+1)/2)^(-gamma/(gamma-1)) (at Mach
number equal 1)

If normal_shock_relations and gamma are both arrays, they must
be the same size. Use normal_shock_relations with mtype value
'pito'.

mtype

A string that defines the input mode for the normal shock relations in
normal_shock_relations.

3-216

flownormalshock

Type Description

'mach' Default. Mach number.

'temp' Temperature ratio.

'pres' Pressure ratio.

'dens' Density ratio.

'velo' Velocity ratio.

'totalp' Total pressure ratio.

'pito' Rayleigh-Pitot ratio.

Output
Arguments

mach

Array of upstream Mach numbers.

P

Array of pressure ratios. The pressure ratio is the static pressure
downstream of the shock over the static pressure upstream of the shock.

T

Array of temperature ratios. The temperature ratio is the static
temperature downstream of the shock over the static temperature
upstream of the shock.

rho

Array of density ratios. The density ratio is the density of the fluid
downstream of the shock over the density upstream of the shock.

downstream_mach

Array of downstream Mach numbers.

P0

3-217

flownormalshock

Array of total pressure ratios. The total pressure ratio is the total
pressure downstream of the shock over the total pressure upstream
of the shock.

P1

Array of Rayleigh-Pitot ratios. The Rayleigh-Pitot ratio is the static
pressure upstream of the shock over the total pressure downstream
of the shock.

Examples Calculate the normal shock relations for air (gamma = 1.4) for total
pressure ratio of 0.61. The following returns scalar values for mach, T, P,
rho, downstream_mach, P0, and P1.

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(1.4, 0.61, 'totalp')

Calculate the normal shock relations for gases with specific heat ratios
given in the following 1 x 4 row array for upstream Mach number 1.5.
The follow yields a 1 x 4 array for mach, T, P, rho, downstream_mach,
P0, and P1.

gamma = [1.3, 1.33, 1.4, 1.67];

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(gamma, 1.5)

Calculate the normal shock relations for a specific heat ratio of
1.4 and range of density ratios from 2.40 to 2.70 in increments of
0.10. The following returns a 4 x 1 column array for mach, T, P, rho,
downstream_mach, P0, and P1.

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(1.4,...

(2.4:.1:2.7)', 'dens')

Calculate the normal shock relations for gases with specific heat ratio
and downstream Mach number combinations as shown. The following

3-218

flownormalshock

example returns a 1 x 2 array for mach, T, P, rho, downstream_mach,
P0, and P1 each, where the elements of each vector corresponds to the
inputs element-wise.

gamma = [1.3, 1.4];

downstream_mach = [.34, .49];

[mach, T, P, rho, downstream_mach, P0, P1] = flownormalshock(gamma,...

downstream_mach, 'down')

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flowprandtlmeyer | flowfanno | flowrayleigh

3-219

flowprandtlmeyer

Purpose Calculate Prandtl-Meyer functions for expansion waves

Syntax [mach, nu, mu] = flowprandtlmeyer(gamma,
prandtlmeyer_array,

mtype)

Description [mach, nu, mu] = flowprandtlmeyer(gamma,
prandtlmeyer_array, mtype) calculates the following: array of Mach
numbers, mach, Prandtl-Meyer angles (nu in degrees) and Mach angles
(mu in degrees). flowprandtlmeyer calculates these arrays for a given
set of specific heat ratios, gamma, and any one of the Prandtl-Meyer
types. You select the Prandtl-Meyer type with mtype.

The function assumes that the flow is two-dimensional. The function
also assumes a smooth and gradual change in flow properties through
the expansion fan.

Note, this function assumes that the environment is a perfect gas. In
the following instances, it cannot assume a perfect gas environment.
If there is a large change in either temperature or pressure without a
proportionally large change in the other, it cannot assume a perfect
gas environment. If the stagnation temperature is above 1500 K, the
function cannot assume constant specific heats. In this case, you must
consider it a thermally perfect gas. See 2 for thermally perfect gas
correction factors. The local static temperature might be so high that
molecules dissociate and ionize (static temperature 5000 K for air). In
this case, you cannot assume a calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be a scalar or array of N
real numbers greater than 1. For subsonic area ratio input mode and
supersonic area ratio input mode, gamma must be a real, finite scalar
greater than 1.

prandtlmeyer_array

3-220

flowprandtlmeyer

Array of real numerical values for one of the Prandtl-Meyer types. This
argument can be one of the following:

• Array of Mach numbers. This array must be a scalar or an array of N
real numbers greater than or equal to 0. If prandtlmeyer_array and
gamma are arrays, they must be the same size.

Use prandtlmeyer_array with mtype value 'mach'. Note, because
'mach' is the default of mtype, mtype is optional when this array
is the input mode.

• Scalar value for Prandtl-Meyer angle in degrees. This value is the
angle change required for a Mach 1 flow to achieve a given Mach
number after expansion. prandtlmeyer_array must be:

- Real scalar greater than or equal to 0 (at Mach number equal 1)

- Less than or equal to 90 * (sqrt((gamma+1)/(gamma-1)) - 1) (as the
Mach number approaches infinity).

Use prandtlmeyer_array with mtype value 'nu'.

• Array of Mach angles in degrees. These values are the angles
between the flow direction and the lines of pressure disturbance
caused by supersonic motion. The Mach angle is a function of Mach
number only. prandtlmeyer_array must be a scalar or array of
N real numbers that are:

- Greater than or equal to 0 (as the Mach number approaches
infinity).

- Less than or equal to 90 (at Mach number equal 1).

Use prandtlmeyer_array with mtype value 'mu'.

mtype

A string for selecting the isentropic flow variable represented by
prandtlmeyer_array.

3-221

flowprandtlmeyer

Type Description

'mach' Default. Mach number..

'nu' Prandtl-Meyer angle

'mu' Mach angle.

Output
Arguments

mach

Array of Mach numbers. In Prandtl-Meyer angle input mode, mach
outputs are the same size as the array input or array inputs. If there
are no array inputs, mach is a scalar.

nu

Array of Prandtl-Meyer angles. The Prandtl-Meyer angle is the angle
change required for a Mach 1 flow to achieve a given Mach number
after expansion.

mu

Array of Mach angles. The Mach angle is between the flow direction
and the lines of pressure disturbance caused by supersonic motion.

Examples Calculate the Prandtl-Meyer relations for air (gamma = 1.4) for
Prandtl-Meyer angle 61 degrees. The following returns a scalar for
mach, nu, and mu.

[mach, nu, mu] = flowprandtlmeyer(1.4, 61, 'nu')

Calculate the Prandtl-Meyer functions for gases with specific heat
ratios. The following yields a 1 x 4 array for nu, but only a scalar for
mach and mu.

gamma = [1.3, 1.33, 1.4, 1.67];
[mach, nu, mu] = flowprandtlmeyer(gamma, 1.5)

3-222

flowprandtlmeyer

Calculate the Prandtl-Meyer angles for a specific heat ratio of 1.4 and
range of Mach angles from 40 degrees to 70 degrees. This example uses
increments of 10 degrees. The following returns a 4 x 1 column array
for mach, nu, and mu.

[mach, nu, mu] = flowprandtlmeyer(1.4, (40:10:70)', 'mu')

Calculate the Prandtl-Meyer relations for gases with specific heat ratio
and Mach number combinations as shown. The following returns a 1 x 2
array for nu and mu each, where the elements of each vector correspond
to the inputs element-wise.

gamma = [1.3, 1.4];
prandtlmeyer_array = [1.13, 9];
[mach, nu, mu] = flowprandtlmeyer(gamma,prandtlmeyer_array)

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowrayleigh | flowfanno

3-223

flowrayleigh

Purpose Rayleigh line flow relations

Syntax [mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma,
rayleigh_flow, mtype)

Description [mach, T, P, rho, velocity, T0, P0] = flowrayleigh(gamma,
rayleigh_flow, mtype) returns an array for each Rayleigh line flow
relation. This function calculates these arrays for a given set of specific
heat ratios (gamma), and any one of the Rayleigh line flow types. You
select the Rayleigh flow type with mtype.

This function assumes that the medium is a calorically perfect gas in
a constant area duct. It assumes that the flow is steady, frictionless,
and one dimensional. It also assumes that the main mechanism for the
change of flow variables is heat transfer.

This function assumes that the environment is a perfect gas. In the
following instances, it cannot assume a perfect gas environment. If
there is a large change in either temperature or pressure without a
proportionally large change in the other, it cannot assume a perfect gas
environment. If the stagnation temperature is above 1500 K, do not
assume constant specific heats. In this case, the medium ceases to be
a calorically perfect gas; you must then consider it a thermally perfect
gas. See 2 for thermally perfect gas correction factors. The local static
temperature might be so high that molecules dissociate and ionize
(static temperature 5000 K for air). In this case, you cannot assume a
calorically or thermally perfect gas.

Input
Arguments

gamma

Array of N specific heat ratios. gamma must be either a scalar or an array
of N real numbers greater than 1. gamma must be a real, finite scalar
greater than 1 for the following input modes: low speed temperature
ratio, high speed temperature ratio, subsonic total temperature,
supersonic total temperature, subsonic total pressure, and supersonic
total pressure.

rayleigh_flow

3-224

flowrayleigh

Array of real numerical values for one Rayleigh line flow. This
argument can be one of the following:

• Array of Mach numbers. This array must be a scalar or an array of
N real numbers greater than or equal to 0. If rayleigh_flow and
gamma are arrays, they must be the same size.

Use rayleigh_flow with mtype value 'mach'. Because 'mach' is the
default of mtype, mtype is optional when this array is the input mode.

• Scalar value of temperature ratio. The temperature ratio is the local
static temperature over the reference static temperature for sonic
flow. rayleigh_flow must be a real scalar:

- Greater than or equal to 0 (at the Mach number equal 0 for low
speeds or as Mach number approaches infinity for high speeds)

- Less than or equal to 1/4*(gamma+1/gamma)+1/2 (at mach =
1/sqrt(gamma))

Use rayleigh_flow with mtype values 'templo' and 'temphi'.

• Array of pressure ratios. The pressure ratio is the local static pressure
over the reference static pressure for sonic flow. rayleigh_flow
must be a scalar or array of real numbers less than or equal to
gamma+1 (at the Mach number equal 0). If rayleigh_flow and gamma
are arrays, they must be the same size.

Use rayleigh_flow with mtype value 'pres'.

• Array of density ratios. The density ratio is the local density over the
reference density for sonic flow. rayleigh_flow must be a scalar
or array of real numbers. These numbers must be greater than or
equal to:

gamma/(gamma+1) (as Mach number approaches infinity)

If rayleigh_flow and gamma are arrays, they must be the same size.

Use rayleigh_flow with mtype value 'dens'.

3-225

flowrayleigh

• Array of velocity ratios. The velocity ratio is the local velocity over
the reference velocity for sonic flow. rayleigh_flow must be a scalar
or an array of N real numbers:

- Greater than or equal to 0

- Less than or equal to (gamma+1)/gamma (as Mach number
approaches infinity)

If rayleigh_flow and gamma are both arrays, they must be the same
size.

Use rayleigh_flow with mtype value 'velo'.

• Scalar value of total temperature ratio. The total temperature ratio
is the local stagnation temperature over the reference stagnation
temperature for sonic flow. In subsonic mode, rayleigh_flow must
be a real scalar:

- Greater than or equal to 0 (at the Mach number equal 0)

- Less than or equal to 1 (at the Mach number equal 1)

In supersonic mode, rayleigh_flow must be a real scalar:

- Greater than or equal to
(gamma+1)^2*(gamma-1)/2/(gamma^2*(1+(gamma-1)/2))) (as Mach
number approaches infinity)

- Less than or equal to 1 (at the Mach number equal 1)

Use rayleigh_flow with the mtype values 'totaltsub' and
'totaltsup'.

• Scalar value of total pressure ratio. The total pressure ratio is the
local stagnation pressure over the reference stagnation pressure for
sonic flow. In subsonic mode, rayleigh_flow must be a real scalar.

- Greater than or equal to 1 (at the Mach number equal 1)

- Less than or equal to (1+gamma)*(1+(gamma-1)/2)^(-gamma/(gamma-1))
(at Mach number equal 0)

3-226

flowrayleigh

In supersonic mode, rayleigh_flow must be a real scalar greater
than or equal to 1.

Use rayleigh_flow with mtype values 'totalpsub' and
'totalpsup'.

mtype

A string that defines the input mode for the Rayleigh flow in
rayleigh_flow.

Type Description

'mach' Default. Mach number.

'templo' Low speed static temperature ratio. The low speed
temperature ratio is the local static temperature
over the reference sonic temperature. This ratio for
when the Mach number of the upstream flow is less
than the critical Mach number of 1/sqrt(gamma).

'temphi' High speed static temperature ratio. The high speed
temperature ratio is the local static temperature
over the reference sonic temperature. This ratio
is for when the Mach number of the upstream
flow is greater than the critical Mach number of
1/sqrt(gamma).

'pres' Pressure ratio.

'dens' Density ratio.

'velo' Velocity ratio.

'totaltsub' Subsonic total temperature ratio.

'totaltsup' Supersonic total temperature ratio.

'totalpsub' Subsonic total pressure ratio.

'totalpsup' Supersonic total pressure ratio.

3-227

flowrayleigh

Output
Arguments

All output ratios are static conditions over the sonic conditions. All
outputs are the same size as the array inputs. If there are no array
inputs, all outputs are scalars.

mach

Array of Mach numbers.

T

Array of temperature ratios. The temperature ratio is the local static
temperature over the reference static temperature for sonic flow.

P

Array of pressure ratios. The pressure ratio is the local static pressure
over the reference static pressure for sonic flow.

rho

Array of density ratio. The density ratio is the local density over the
reference density for sonic flow.

velocity

Array of velocity ratios. The velocity ratio is the local velocity over the
reference velocity for sonic flow.

T0

Array of total temperature ratios. The temperature ratio is the local
static temperature over the reference static temperature for sonic flow.

P0

Array of total pressure ratios. The total pressure ratio is the local
stagnation pressure over the reference stagnation pressure for sonic
flow.

3-228

flowrayleigh

Examples Calculate Rayleigh Line Flow Relations Given Air

Calculate the Rayleigh line flow relations for air (gamma = 1.4) for
supersonic total pressure ratio 1.2.

[mach,T,P,rho,velocity,T0,P0] =
flowrayleigh(1.4,1.2,'totalpsup')

mach =

1.6397

T =

0.6823

P =

0.5038

rho =

0.7383

velocity =

1.3545

T0 =

0.8744

P0 =

1.2000

This example returns scalar values for mach, T, P, rho, velocity, T0,
and P0.

3-229

flowrayleigh

Calculate Rayleigh Line Flow Relations for Specific Heat
Ratios in Array

Calculate the Rayleigh line flow relations for gases with specific heat
ratios given in the following 1 x 4 row array for the Mach number 0.5.

gamma = [1.3,1.33,1.4,1.67];
[mach,T,P,rho,velocity,T0,P0] = flowrayleigh(gamma,0.5)

mach =

0.5000 0.5000 0.5000 0.5000

T =

0.7533 0.7644 0.7901 0.8870

P =

1.7358 1.7486 1.7778 1.8836

rho =

2.3043 2.2876 2.2500 2.1236

velocity =

0.4340 0.4371 0.4444 0.4709

T0 =

0.6796 0.6832 0.6914 0.7201

P0 =

1.1111 1.1121 1.1141 1.1202

3-230

flowrayleigh

This example returns a 1 x 4 row array for mach, T, P, rho, velocity,
T0, and P0.

Calculate Rayleigh Line Flow Relations for Specific Heat
Ratios and High Speed Temperature

Calculate the Rayleigh line flow relations for a specific heat ratio of 1.4
and high speed temperature ratio 0.70.

[mach,T,P,rho,velocity,T0,P0] =
flowrayleigh(1.4,0.70,'temphi')

mach =

1.6035

T =

0.7000

P =

0.5218

rho =

0.7454

velocity =

1.3416

T0 =

0.8833

P0 =

3-231

flowrayleigh

1.1777

This example returns scalar values for mach, T, P, rho, velocity, T0,
and P0.

Calculate Rayleigh Line Flow Relations for Gases with
Specific Heat Ratio and Static Pressure

Calculate the Rayleigh line flow relations for gases with specific heat
ratio and static pressure ratio combinations as shown.

gamma = [1.3,1.4];
P = [0.13,1.7778];
[mach,T,P,rho,velocity,T0,P0] =
flowrayleigh(gamma,P,'pres')

mach =

3.5833 0.5000

T =

0.2170 0.7901

P =

0.1300 1.7778

rho =

0.5991 2.2501

velocity =

1.6692 0.4444

T0 =

3-232

flowrayleigh

0.5521 0.6913

P0 =

7.4381 1.1141

This example returns a 1 x 2 array for mach, T, P, rho, velocity, T0,
and P0 each. The elements of each array correspond to the inputs
element-wise.

References 1. James, J. E. A., Gas Dynamics, Second Edition, Allyn and Bacon,
Inc, Boston, 1984.

2. NACA Technical Report 1135, 1953, National Advisory Committee on
Aeronautics, Ames Research Staff, Moffett Field, Calif. Pages 667–671.

See Also flowisentropic | flownormalshock | flowprandtlmeyer | flowfanno

3-233

generatePatches (Aero.Body)

Purpose Generate patches for body with loaded face, vertex, and color data

Syntax generatePatches(h, ax)
h.generatePatches(ax)

Description generatePatches(h, ax) and h.generatePatches(ax) generate
patches for the animation body object h using the loaded face, vertex,
and color data in ax.

Examples Generate patches for b using the axes, ax.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
f = figure;
ax = axes;
b.generatePatches(ax);

See Also load

3-234

GenerateRunScript (Aero.FlightGearAnimation)

Purpose Generate run script for FlightGear flight simulator

Syntax GenerateRunScript(h)
h.GenerateRunScript

Description GenerateRunScript(h) and h.GenerateRunScript generate a run
script for FlightGear flight simulator using the following FlightGear
animation object properties:

OutputFileName Specify the name of the output
file. The file name is the name
of the command you will use to
start FlightGear with these initial
parameters. The default value is
'runfg.bat'.

FlightGearBaseDirectory Specify the name of your
FlightGear installation
folder. The default value is
'D:\Applications\FlightGear'.

GeometryModelName Specify the name of the
folder containing the desired
model geometry in the
FlightGear\data\Aircraft
folder. The default value is
'HL20'.

DestinationIpAddress Specify your destination IP
address. The default value is
'127.0.0.1'.

DestinationPort Specify your network flight
dynamics model (fdm) port. This
destination port should be an
unused port that you can use
when you launch FlightGear. The
default value is '5502'.

3-235

GenerateRunScript (Aero.FlightGearAnimation)

AirportId Specify the airport ID. The list of
supported airports is available in
the FlightGear interface, under
Location. The default value is
'KSFO'.

RunwayId Specify the runway ID. The default
value is '10L'.

InitialAltitude Specify the initial altitude of the
aircraft, in feet. The default value
is 7224 feet.

InitialHeading Specify the initial heading of the
aircraft, in degrees. The default
value is 113 degrees.

OffsetDistance Specify the offset distance of the
aircraft from the airport, in miles.
The default value is 4.72 miles.

OffsetAzimuth Specify the offset azimuth of the
aircraft, in degrees. The default
value is 0 degrees.

Architecture Specify the architecture on
which the FlightGear software is
running.

Examples Create a run script, runfg.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
GenerateRunScript(h)

Create a run script, myscript.bat, to start FlightGear flight simulator
using the default object settings:

h = fganimation
h.OutputFileName = 'myscript.bat'

3-236

GenerateRunScript (Aero.FlightGearAnimation)

GenerateRunScript(h)

See Also initialize | play | update

3-237

geoc2geod

Purpose Convert geocentric latitude to geodetic latitude

Syntax geodeticLatitude = geoc2geod(geocentricLatitude, radii)
geodeticLatitude = geoc2geod(geocentricLatitude, radii,

model)
geodeticLatitude = geoc2geod(geocentricLatitude, radii,

flattening, equatorialRadius)

Description geodeticLatitude = geoc2geod(geocentricLatitude, radii)
converts an array of m-by-1 geocentric latitudes and an array of radii
from the center of the planet into an array of m-by-1 geodetic latitudes.

geodeticLatitude = geoc2geod(geocentricLatitude, radii,
model) converts for a specific ellipsoid planet.

geodeticLatitude = geoc2geod(geocentricLatitude, radii,
flattening, equatorialRadius) converts for a custom ellipsoid
planet defined by flattening and the equatorial radius.

The function uses geometric relationships to calculate the geodetic
latitude in this noniterative method.

This function has the limitation that this implementation generates a
geodetic latitude that lies between ±90 degrees.

Input
Arguments

geocentricLatitude

Array of m-by-1 geocentric latitudes, in degrees. This value must be
between +90 and -90.

radii

Array of radii from the center of the planet, in meters.

model

Specific ellipsoid planet specified as a string. This function supports
only 'WGS84'.

flattening

3-238

geoc2geod

Custom ellipsoid planet defined by flattening.

equatorialRadius

Equatorial radius, in meters.

Output
Arguments

geodeticLatitude

Array of m-by-1 geodetic latitudes, in degrees.

Examples Determine geodetic latitude given a geocentric latitude and radius:

gd = geoc2geod(45, 6379136)

gd =

45.1921

Determine geodetic latitude at multiple geocentric latitudes, given a
radius, and specifying WGS84 ellipsoid model:

gd = geoc2geod([0 45 90], 6379136, 'WGS84')

gd =

0 45.1921 90.0000

Determine geodetic latitude at multiple geocentric latitudes, given a
radius, and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gd = geoc2geod([0 45 90], 6379136, f, Re)

3-239

geoc2geod

gd =

0 45.1550 90.0000

References Jackson, E.B., Manual for a Workstation-based Generic Flight
Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April
1995

Hedgley, D. R., Jr., An Exact Transformation from Geocentric to Geodetic
Coordinates for Nonzero Altitudes, NASA TR R-458, March, 1976

Clynch, J. R., Radius of the Earth — Radii Used
in Geodesy, Naval Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry,
2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986

See Also geod2geoc | ecef2lla | lla2ecef

3-240

http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf

geocradius

Purpose Estimate radius of ellipsoid planet at geocentric latitude

Syntax r = geocradius(lambda)
r = geocradius(lambda, model)
r = geocradius(lambda, f, Re)

Description r = geocradius(lambda) estimates the radius, r, of an ellipsoid planet
at a particular geocentric latitude, lambda. lambda is in degrees. r is in
meters. The default ellipsoid planet is WGS84.

r = geocradius(lambda, model) is an alternate method for
estimating the radius for a specific ellipsoid planet. Currently only
'WGS84' is supported for model.

r = geocradius(lambda, f, Re) is another alternate method for
estimating the radius for a custom ellipsoid planet defined by flattening,
f, and the equatorial radius, Re, in meters.

Examples Determine radius at 45 degrees latitude:

r = geocradius(45)

r =

6.3674e+006

Determine radius at multiple latitudes:

r = geocradius([0 45 90])

r =

1.0e+006 *

6.3781 6.3674 6.3568

3-241

geocradius

Determine radius at multiple latitudes, specifying WGS84 ellipsoid
model:

r = geocradius([0 45 90], 'WGS84')

r =

1.0e+006 *

6.3781 6.3674 6.3568

Determine radius at multiple latitudes, specifying custom ellipsoid
model:

f = 1/196.877360;
Re = 3397000;
r = geocradius([0 45 90], f, Re)

r =

1.0e+006 *

3.3970 3.3883 3.3797

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

Zipfel, P. H., and D. E. Penny, Modeling and Simulation of Aerospace
Vehicle Dynamics, AIAA Education Series, Reston, VA, 2000

See Also geoc2geod | geod2geoc

3-242

geod2geoc

Purpose Convert geodetic latitude to geocentric latitude

Syntax gc = geod2geoc(gd, h)
gc = geod2geoc(gd, h, model)
gc = geod2geoc(gd, h, f, Re)

Description gc = geod2geoc(gd, h) converts an array of m geodetic latitudes, gd,
and an array of mean sea level altitudes, h, into an array of m geocentric
latitudes, gc. Both gc and gd are in degrees and must be between +90
and -90. h is in meters.

gc = geod2geoc(gd, h, model) is an alternate method for converting
from geodetic to geocentric latitude for a specific ellipsoid planet.
Currently only 'WGS84' is supported for model.

gc = geod2geoc(gd, h, f, Re) is another alternate method for
converting from geodetic to geocentric latitude for a custom ellipsoid
planet defined by flattening, f, and the equatorial radius, Re, in meters.

Examples Determine geocentric latitude given a geodetic latitude and altitude:

gc = geod2geoc(45, 1000)

gc =

44.8076

Determine geocentric latitude at multiple geodetic latitudes and
altitudes, specifying WGS84 ellipsoid model:

gc = geod2geoc([0 45 90], [1000 0 2000], 'WGS84')

gc =

0
44.8076

3-243

geod2geoc

90.0000

Determine geocentric latitude at multiple geodetic latitudes, given an
altitude and specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
gc = geod2geoc([0 45 90], 2000, f, Re)

gc =

0
44.7084
90.0000

Assumptions
and
Limitations

This implementation generates a geocentric latitude that lies between
±90 degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, New York, NY, 1992

See Also geoc2geod | ecef2lla | lla2ecef

3-244

geoidegm96

Purpose Calculate geoid height as determined from EGM96 Geopotential Model

Note geoidegm96 will be removed in a future version. Use
geoidheight instead.

Syntax N = geoidegm96(lat, long)
N = geoidegm96(lat, long, action)

Description N = geoidegm96(lat, long) calculates the geoid height as determined
from the EGM96 Geopotential Model. It calculates geoid heights to 0.01
meters. This function interpolates geoid heights from a 15-minute grid
of point values in the tide-free system, using the EGM96 Geopotential
Model to the degree and order 360. The geoid undulations are relative
to the WGS84 ellipsoid.

N = geoidegm96(lat, long, action) calculates the geoid height
as determined from the EGM96 Geopotential Model. This function
performs action if latitude or longitude are out of range.

Inputs required by geoidegm96:

lat An array of m geocentric latitudes,
in degrees, where north latitude is
positive and south latitude is negative.
lat must be of type single or double.
If lat is not within the range -90 to
90, inclusive, this function wraps the
value to be within the range.

long An array of m geocentric longitudes,
in degrees, where east longitude
is positive and west longitude is
negative. long must be of type single
or double. If long is not within the
range 0 to 360 inclusive, this function

3-245

geoidegm96

wraps the value to be within the
range.

action A string to determine action
for out-of-range input. Specify
if out-of-range input invokes a
'Warning', 'Error', or no action
('None'). The default is 'Warning'.

Examples Calculate the geoid height at 42.4 degrees N latitude and 71.0 degrees
E longitude.

N = geoidegm96(42.4, 71.0)

Calculate the geoid height at two different locations, with out-of-range
actions generating warnings.

N = geoidegm96([39.3,33.4], [-77.2, 36.5])

Calculate the geoid height with latitude wrapping, with out-of-range
actions displaying no warnings.

N = geoidegm96(100,150,'None')

Limitations This function has the limitations of the 1996 Earth
Geopotential Model. For more information, see
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html.

The WGS84 EGM96 geoid undulations have an error range of +/-0.5 to
+/-1.0 meters worldwide.

References NIMA TR8350.2: “Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.”

NASA/TP-1998-206861: “The Development of the Joint NASA GSFC
and NIMA Geopotential Model EGM96”

National Geospatial-Intelligence Agency Website:
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

3-246

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html

geoidegm96

See Also gravitywgs84

3-247

geoidheight

Purpose Calculate geoid height

Syntax N = geoidheight(latitude,longitude)
N = geoidheight(latitude, longitude, modelname)
N = geoidheight(latitude, longitude, action)
N = geoidheight(latitude, longitude, modelname, action)
N = geoidheight(latitude, longitude, 'Custom', datafile)
N = geoidheight(latitude, longitude, 'Custom', datafile,

action)

Description N = geoidheight(latitude,longitude) calculates the geoid height
using the EGM96 Geopotential Model. For this model, it calculates
these geoid heights to an accuracy of 0.01 m. It interpolates an array
of m geoid heights at m geocentric latitudes, latitude, and m geocentric
longitudes, longitude.

N = geoidheight(latitude, longitude, modelname) calculates the
geoid height using the model, modelname.

N = geoidheight(latitude, longitude, action) calculates the
geoid height using the EGM96 Geopotential Model. This function
performs action if latitude or longitude are out of range.

N = geoidheight(latitude, longitude, modelname, action)
calculates the geoid height using modelname.

N = geoidheight(latitude, longitude, 'Custom', datafile)
calculates the geoid height using a custom model that datafile defines.

N = geoidheight(latitude, longitude, 'Custom', datafile,
action) calculates the geoid height using the custom model. This
function performs action if latitude or longitude are out of range.

Tips • This function interpolates geoid heights from a grid of point values in
the tide-free system.

• When using the EGM96 Model, this function has the limitations of
the 1996 Earth Geopotential Model.

3-248

geoidheight

• When using the EGM2008 Model, this function has the limitations of
the 2008 Earth Geopotential Model.

• The interpolation scheme wraps over the poles to allow for geoid
height calculations at and near pole locations.

• The geoid undulations for the EGM96 and EGM2008 models are
relative to the WGS84 ellipsoid.

• The WGS84 EGM96 geoid undulations have an error range of +/– 0.5
to +/– 1.0 m worldwide.

Input
Arguments

latitude

An array of m geocentric latitudes, in degrees, where north latitude is
positive and south latitude is negative. latitude must be of type single
or double. If latitude is not within the range –90 to 90, inclusive, this
function wraps the value to be within the range.

longitude

An array of m geocentric longitudes, in degrees, where east longitude
is positive and west longitude is negative. longitude must be of type
single or double. If longitude is not within the range 0 to 360 inclusive,
this function wraps the value to be within the range.

model

String that specifies the geopotential model.

3-249

geoidheight

Geopotential
Model

Description

'EGM96' EGM96 Geopotential Model to degree and order 360.
This model uses a 15-minute grid of point values in
the tide-free system. This function calculates geoid
heights to an accuracy of 0.01 m for this model.

'EGM2008' EGM2008 Geopotential Model to degree and order
2159. This model uses a 2.5-minute grid of point
values in the tide-free system. This function
calculates geoid heights to an accuracy of 0.001 m
for this model.

'Custom' Custom geopotential model that you define in
datafile. This function calculates geoid heights to
an accuracy of 0.01 m for custom models.

Note To deploy a custom geopotential model,
explicitly include the custom data and reader files
to the MATLAB Compiler™ (mcc) command at
compilation. For example:

mcc -m mycustomsgeoidheightfunction...
-a customDataFile -a customReaderFile

For other geopotential models, use the MATLAB
Compiler as usual.

Default: EGM96

datafile

Optional file that contains definitions for a custom geopotential model.
Provide this file only if you specify 'Custom' for the model argument.
For an example of file content, see aerogmm2b.mat.

3-250

geoidheight

This file must contain the following variables.

Variable Description

'latbp' Array of geocentric latitude breakpoints.

'lonbp' Array of geocentric longitude breakpoints.

'grid' Table of geoid height values.

'windowSize' Even integer scalar greater than 2 for the number of
interpolation points.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning'
'None'

Default: Warning

Output
Arguments

N

An array of M geoid heights in meters. The values in this array have
the same data type as latitude.

Examples Calculate the EGM96 geoid height at 42.4 degrees N latitude and 71.0
degrees W longitude with warning actions:

N = geoidheight(42.4, -71.0)

Calculate the EGM2008 geoid height at two different locations with
error actions.

N = geoidheight([39.3, 33.4], [77.2, 36.5], 'egm2008', ...
'error')

3-251

geoidheight

Calculate a custom geoid height at two different locations with no
actions.

N = geoidheight([39.3, 33.4], [-77.2, 36.5], 'custom', ...
'geoidegm96grid','none')

References Vallado, D. A. “Fundamentals of Astrodynamics and Applications.”
McGraw-Hill, New York, 1997.

NIMA TR8350.2: "Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems."

See Also gravitywgs84 | gravitysphericalharmonic

Related
Links

• National Geospatial-Intelligence Agency Web site:
http://earth-info.nga.mil/GandG/publications/vertdatum.html

3-252

http://earth-info.nga.mil/GandG/publications/vertdatum.html
http://earth-info.nga.mil/GandG/publications/vertdatum.html

Geometry (Aero.Geometry)

Purpose Construct 3-D geometry for use with animation object

Syntax h = Aero.Geometry

Description h = Aero.Geometry defines a 3-D geometry for use with an animation
object.

See Aero.Geometry for further details.

See Also Aero.Geometry

3-253

gravitycentrifugal

Purpose Implement centrifugal effect of planetary gravity

Syntax [gx gy gz] = gravitycentrifugal(planet_coordinates)
[gx gy gz] = gravitycentrifugal(planet_coordinates, model)
[gx gy gz] = gravitycentrifugal(planet_coordinates,
'Custom',

rotational_rate)

Description [gx gy gz] = gravitycentrifugal(planet_coordinates)
implements the mathematical representation of centrifugal effect for
planetary gravity based on planetary rotation rate. This function
calculates arrays of N gravity values in the x-axis, y-axis, and z-axis
of the Planet-Centered Planet-Fixed coordinates for the planet. It
performs these calculations using planet_coordinates, an M-by-3
array of Planet-Centered Planet-Fixed coordinates. You use centrifugal
force in rotating or noninertial coordinate systems. Gravity centrifugal
effect values are greatest at the equator of a planet.

[gx gy gz] = gravitycentrifugal(planet_coordinates, model)
implements the mathematical representation of centrifugal effect based
on planetary gravitational potential for the planetary model, model.

[gx gy gz] = gravitycentrifugal(planet_coordinates,
'Custom', rotational_rate) implements the mathematical
representation of centrifugal effect based on planetary gravitational
potential using the custom rotational rate, rotational_rate.

Input
Arguments

planet_coordinates

M-by-3 array of Planet-Centered Planet-Fixed coordinates in meters.
The z-axis is positive toward the North Pole. If model is 'Earth', the
planet coordinates are ECEF coordinates.

model

String that specifies the planetary model. Default is 'Earth'. Specify
one:

• 'Mercury'

3-254

gravitycentrifugal

• 'Venus'

• 'Earth'

• 'Moon'

• 'Mars'

• 'Jupiter'

• 'Saturn'

• 'Uranus'

• 'Neptune'

• 'Custom'

'Custom' requires that you specify your own planetary model using
the rotational_rate parameter.

rotational_rate

Scalar value that specifies the planetary rotational rate in radians per
second. Specify this parameter only if model has the value 'Custom'.

Output
Arguments

gx

Array of M gravity values in the x-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gy

Array of M gravity values in the y-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gz

Array of M gravity values in the z-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

Examples Calculate the centrifugal effect of Earth gravity in the x-axis at the
equator on the surface of Earth:

3-255

gravitycentrifugal

gx = gravitycentrifugal([-6378.1363e3 0 0])

Calculate the centrifugal effect of Mars gravity at 15000 m over the
equator and 11000 m over the North Pole:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]
[gx, gy, gz] = gravitycentrifugal(p, 'Mars')

Calculate the precessing centrifugal effect of gravity for Earth at 15000
m over the equator and 11000 m over the North Pole. This example
uses a custom planetary model at Julian date 2451545:

p = [2412.648e3 -2412.648e3 0; 0 0 3376e3]
% Set julian date to January 1, 2000 at noon GMT
JD = 2451545
% Calculate precession rate in right ascension in meters
pres_RA = 7.086e-12 + 4.3e-15*(JD - 2451545)/36525
% Calculate the rotational rate in a precessing reference
% frame
Omega = 7.2921151467e-5 + pres_RA
[gx, gy, gz] = gravitycentrifugal(p, 'custom', Omega)

See Also gravitywgs84 | gravitysphericalharmonic | gravityzonal

3-256

gravitysphericalharmonic

Purpose Implement spherical harmonic representation of planetary gravity

Syntax [gx gy gz] = gravitysphericalharmonic(planet_coordinates)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

degree)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model, degree)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

model, degree, action)
[gx gy gz] = gravitysphericalharmonic(planet_coordinates,

'Custom', degree, {datafile dfreader}, action)

Description [gx gy gz] = gravitysphericalharmonic(planet_coordinates)
implements the mathematical representation of spherical harmonic
planetary gravity based on planetary gravitational potential. This
function calculates arrays of N gravity values in the x-axis, y-axis, and
z-axis of the Planet-Centered Planet-Fixed coordinates for the planet.
It performs these calculations using planet_coordinates, an M-by-3
array of Planet-Centered Planet-Fixed coordinates. By default, this
function assumes 120th degree and order spherical coefficients for the
'EGM2008' (Earth) planetary model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model) implements the mathematical representation for the planetary
model, model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
degree) uses the degree and order that degree specifies.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model, degree) uses the degree and order that degree specifies. model
specifies the planetary model.

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
model, degree, action) uses the specified action when input is out
of range.

3-257

gravitysphericalharmonic

[gx gy gz] = gravitysphericalharmonic(planet_coordinates,
'Custom', degree, {datafile dfreader}, action) implements
the mathematical representation for a custom model planet. datafile
defines the planetary model. dfreader specifies the reader for
datafile.

This function has the following limitations:

• The function excludes the centrifugal effects of planetary rotation,
and the effects of a precessing reference frame.

• Spherical harmonic gravity model is valid for radial positions greater
than the planet equatorial radius. Minor errors might occur for
radial positions near or at the planetary surface. The spherical
harmonic gravity model is not valid for radial positions less than
planetary surface.

Tips • When inputting a large PCPF array and a high degree value, you
might receive an out-of-memory error. For more information about
avoiding out-of-memory errors in the MATLAB environment, see
“Memory Usage”.

• When inputting a large PCPF array, you might receive a maximum
matrix size limitation. To determine the largest matrix or array that
you can create in the MATLAB environment for your platform, see
“Memory Usage”.

Input
Arguments

planet_coordinates

M-by-3 array of Planet-Centered Planet-Fixed coordinates in meters.
The z-axis is positive toward the North Pole. If model is 'EGM2008' or
'EGM96' (Earth), the planet coordinates are ECEF coordinates.

model

String that specifies the planetary model. Default is 'EGM2008'. Specify
one:

3-258

gravitysphericalharmonic

Planetary
Model

Planet

'EGM2008' Earth Gravitational Model 2008

'EGM96' Earth Gravitational Model 1996

'LP100K' 100th degree Moon model

'LP165P' 165th degree Moon model

'GMM2B' Goddard Mars model 2B

'Custom' Custom planetary model that you define in datafile

Note To deploy a custom planetary model,
explicitly include the custom data and reader
files to the MATLAB Compiler (mcc) command at
compilation. For example:

mcc -m mycustomsphericalgravityfunction...
-a customDataFile -a customReaderFile

For other planetary models, use the MATLAB
Compiler as usual.

'EIGENGL04C' Combined Earth gravity field model EIGEN-GL04C.

When inputting a large PCPF array and a high degree value, you might
receive an out-of-memory error. For more information about avoiding
out-of-memory errors in the MATLAB environment, see “Memory
Usage”.

When inputting a large PCPF array, you might receive a maximum
matrix size limitation. To determine the largest matrix or array that
you can create in the MATLAB environment for your platform, see
“Memory Usage”.

degree

3-259

gravitysphericalharmonic

Scalar value that specifies the degree and order of the harmonic gravity
model.

Planetary
Model

Degree and Order

'EGM2008' Maximum degree and order is 2159.

Default degree and order are 120.

'EGM96' Maximum degree and order is 360.

Default degree and order are 70.

'LP100K' Maximum degree and order is 100.

Default degree and order are 60.

'LP165P' Maximum degree and order is 165.

Default degree and order are 60.

'GMM2B' Maximum degree and order is 80.

Default degree and order are 60.

'Custom' Maximum degree is default degree and order.

'EIGENGL04C' Maximum degree and order is 360.

Default degree and order are 70.

When inputting a large PCPF array and a high degree value, you might
receive an out-of-memory error. For more information about avoiding
out-of-memory errors in the MATLAB environment, see “Memory
Usage”.

When inputting a large PCPF array, you might receive a maximum
matrix size limitation. To determine the largest matrix or array that
you can create in the MATLAB environment for your platform, see
“Memory Usage”.

action

String that defines action for out-of-range input. Specify one:

3-260

gravitysphericalharmonic

'Error'
'Warning' (default)
'None'

’Custom’

String that specifies that datafile contains definitions for a custom
planetary model.

datafile

File that contains definitions for a custom planetary model. For an
example of file content, see aerogmm2b.mat.

This file must contain the following variables.

Variable Description

Re Scalar of planet equatorial radius in meters (m)

GM Scalar of planetary gravitational parameter in meters
cubed per second squared (m3/s2)

degree Scalar of maximum degree

C (degree+1)-by-(degree+1) matrix containing normalized
spherical harmonic coefficients matrix, C

S (degree+1)-by-(degree+1) matrix containing normalized
spherical harmonic coefficients matrix, S

This parameter requires that you specify a program in the dfreader
parameter to read the data file.

dfreader

Specify a MATLAB function to read datafile. The reader file that you
specify depends on the file type of datafile.

3-261

gravitysphericalharmonic

Data File
Type

Description

MATLAB
file

Specify the MATLAB load function, for example, @load.

Other file
type

Specify a custom MATLAB reader function.
For examples of custom reader functions, see
astReadSHAFile.m and astReadEGMFile.m. Note the
output variable order in these files.

Output
Arguments

gx

Array of N gravity values in the x-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gy

Array of N gravity values in the y-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

gz

Array of N gravity values in the z-axis of the Planet-Centered
Planet-Fixed coordinates in meters per second squared (m/s2).

Examples Calculate the gravity in the x-axis at the equator on the surface of
Earth. This example uses the default 120 degree model of EGM2008
with default warning actions:

gx = gravitysphericalharmonic([-6378.1363e3 0 0])

Calculate the gravity at 25000 m over the south pole of Earth. This
example uses the 70 degree model of EGM96 with error actions:

[gx, gy, gz] = gravitysphericalharmonic([0 0 -6381.751e3], 'EGM96', 'Error')

3-262

gravitysphericalharmonic

Calculate the gravity at 15000 m over the equator and 11000 m over
the North Pole. This example uses a 30th order GMM2B Mars model
with warning actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]

[gx, gy, gz] = gravitysphericalharmonic(p, 'GMM2B', 30, 'Warning')

Calculate the gravity at 15000 m over the equator and 11000 m over
the North Pole. This example uses a 60th degree custom planetary
model with no actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376e3]

[gx, gy, gz] = gravitysphericalharmonic(p, 'custom', 60, ...

{'GMM2BC80_SHA.txt' @astReadSHAFile}, 'None')

Calculate the gravity at 25000 meters over the south pole of Earth using
a 120th order EIGEN-GL04C Earth model with warning actions:

p = [0 0 -6381.751e3]

[gx, gy, gz] = gravitysphericalharmonic(p, 'EIGENGL04C', ...

120, 'Warning')

Gottlieb, R. G., “Fast Gravity, Gravity Partials, Normalized Gravity,
Gravity Gradient Torque and Magnetic Field: Derivation, Code and
Data,” Technical Report NASA Contractor Report 188243,NASA
Lyndon B. Johnson Space Center, Houston, TX, February 1993

References
[1] Gottlieb, R. G., “Fast Gravity, Gravity Partials, Normalized Gravity,
Gravity Gradient Torque and Magnetic Field: Derivation, Code and
Data,” Technical Report NASA Contractor Report 188243, NASA
Lyndon B. Johnson Space Center, Houston, Texas, February 1993.

3-263

gravitysphericalharmonic

[2] Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

[3] “NIMA TR8350.2: Department of Defense World Geodetic System
1984, Its Definition and Relationship with Local Geodetic Systems”.

[4] Konopliv, A. S., S. W. Asmar, E. Carranza, W. L. Sjogen, D. N.
Yuan., “Recent Gravity Models as a Result of the Lunar Prospector
Mission, Icarus”, Vol. 150, no. 1, pp 1–18, 2001.

[5] Lemoine, F. G., D. E. Smith, D.D. Rowlands, M.T. Zuber, G. A.
Neumann, and D. S. Chinn, “An improved solution of the gravity field of
Mars (GMM-2B) from Mars Global Surveyor”, Journal Of Geophysical
Research, Vol. 106, No. E10, pp 23359-23376, October 25, 2001.

[6] Kenyon S., J. Factor, N. Pavlis, and S. Holmes, “Towards the Next
Earth Gravitational Model”, Society of Exploration Geophysicists 77th
Annual Meeting, San Antonio, Texas, September 23–28, 2007.

[7] Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor, “An Earth
Gravitational Model to Degree 2160: EGM2008”, presented at the 2008
General Assembly of the European Geosciences Union, Vienna, Austria,
April 13–18, 2008.

[8] Grueber, T., and A. Köhl, “Validation of the EGM2008 Gravity Field
with GPS-Leveling and Oceanographic Analyses”, presented at the IAG
International Symposium on Gravity, Geoid & Earth Observation 2008,
Chania, Greece, June 23–27, 2008.

[9] Förste, C., Flechtner, F., Schmidt, R., König, R., Meyer, U.,
Stubenvoll, R., Rothacher, M., Barthelmes, F., Neumayer, H.,
Biancale, R., Bruinsma, S., Lemoine, J.M., Loyer, S., “A Mean Global
Gravity Field Model From the Combination of Satellite Mission and
Altimetry/Gravmetry Surface Data - EIGEN-GL04C”, Geophysical
Research Abstracts, Vol. 8, 03462, 2006.

See Also gravitywgs84 | gravitycentrifugal | gravityzonal | geoidegm96

3-264

gravitywgs84

Purpose Implement 1984 World Geodetic System (WGS84) representation of
Earth’s gravity

Syntax g = gravitywgs84(h, lat)
g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,

jd], action)
gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent, prec,

jd], action)
[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,

prec, jd], action)

Description g = gravitywgs84(h, lat) implements the mathematical
representation of the geocentric equipotential ellipsoid of WGS84.
Using h, an array of m altitudes in meters, and lat, an array of m
geodetic latitudes in degrees, calculates g, an array of m gravity values
in the direction normal to the Earth’s surface at a specific location.
The default calculation method is Taylor Series. Gravity precision is
controlled via the method parameter.

g = gravitywgs84(h, lat, lon, method, [noatm, nocent, prec,
jd], action) lets you specify both latitude and longitude, as well as
other optional inputs, when calculating gravity values in the direction
normal to the Earth’s surface. In this format, method can be either
'CloseApprox'or'Exact'.

gt = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates an array of total gravity values in the
direction normal to the Earth’s surface.

[g gn] = gravitywgs84(h, lat, lon, 'Exact', [noatm, nocent,
prec, jd], action) calculates gravity values in the direction both
normal and tangential to the Earth’s surface.

Inputs for gravitywgs84 are:

3-265

gravitywgs84

h An array of m altitudes, in meters

lat An array of m geodetic latitudes, in degrees,
where north latitude is positive, and south
latitude is negative

lon An array of m geodetic longitudes, in
degrees, where east longitude is positive,
and west longitude is negative. This input
is available only with method specified as
'CloseApprox'or'Exact'.

method A string specifying the method to calculate
gravity: 'TaylorSeries', 'CloseApprox', or
'Exact'. The default is 'TaylorSeries'.

noatm A logical value specifying the exclusion of
Earth’s atmosphere. Set to true for the Earth’s
gravitational field to exclude the mass of
the atmosphere. Set to false for the value
for the Earth’s gravitational field to include
the mass of the atmosphere. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

nocent A logical value specifying the removal of
centrifugal effects. Set to true to calculate
gravity based on pure attraction resulting from
the normal gravitational potential. Set to false
to calculate gravity including the centrifugal
force resulting from the Earth’s angular
velocity. This option is available only with
method specified as 'CloseApprox'or'Exact'.
The default is false.

3-266

gravitywgs84

prec A logical value specifying the presence of a
precessing reference frame. Set to true for the
angular velocity of the Earth to be calculated
using the International Astronomical Union
(IAU) value of the Earth’s angular velocity
and the precession rate in right ascension. To
obtain the precession rate in right ascension,
Julian Centuries from Epoch J2000.0 is
calculated using the Julian date, jd. If set to
false, the angular velocity of the Earth used
is the value of the standard Earth rotating
at a constant angular velocity. This option
is available only with method specified as
'CloseApprox'or'Exact'. The default is
false.

jd A scalar value specifying Julian date used to
calculate Julian Centuries from Epoch J2000.0.
This input is available only with method
specified as 'CloseApprox'or'Exact'.

action A string to determine action for out-of-range
input. Specify if out-of-range input invokes a
'Warning', 'Error', or no action ('None'). The
default is 'Warning'.

Outputs calculated for the Earth’s gravity include:

3-267

gravitywgs84

g An array of m gravity values in the direction
normal to the Earth’s surface at a specific
lat lon location. A positive value indicates a
downward direction.

gt An array of m total gravity values in the
direction normal to the Earth’s surface at a
specific lat lon location. A positive value
indicates a downward direction. This option is
available only with method specified as'Exact'.

gn An array of m gravity values in the direction
tangential to the Earth’s surface at a specific
lat lon location. A positive value indicates a
northward direction. This option is available
only with method specified as'Exact'.

Examples Calculate the normal gravity at 5000 meters and 55 degrees latitude
using the Taylor Series approximation method with errors for
out-of-range inputs:

g = gravitywgs84(5000, 55, 'TaylorSeries', 'Error')

g =

9.7997

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Close Approximation method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox')

g =

3-268

gravitywgs84

9.7601

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact')

g =

9.7772

gt =

0

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude and 11,000 meters, 30 degrees
latitude, and 50 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and no precessing, with no actions for
out-of-range inputs:

h = [1000; 11000];
lat = [0; 30];
lon = [20; 50];
[g, gt] = gravitywgs84(h, lat, lon, 'Exact', 'None')

g =

9.7772
9.7594

3-269

gravitywgs84

gt =

1.0e-004 *

0
-0.7751

Calculate the normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude and 5000 meters, 55 degrees latitude, and
100 degrees longitude using the Close Approximation method with
atmosphere, no centrifugal effects, and no precessing, with warnings for
out-of-range inputs:

h = [15000 5000];

lat = [45 55];

lon = [120 100];

g = gravitywgs84(h, lat, lon, 'CloseApprox', [false true false 0])

g =

9.7771 9.8109

Calculate the normal and tangential gravity at 1000 meters, 0 degrees
latitude, and 20 degrees longitude using the Exact method with
atmosphere, centrifugal effects, and precessing at Julian date 2451545,
with warnings for out-of-range inputs:

[g, gt] = gravitywgs84(1000, 0, 20, 'Exact', ...
[false false true 2451545], 'Warning')

g =

9.7772

3-270

gravitywgs84

gt =

0

Calculate the normal gravity at 15,000 meters, 45 degrees latitude, and
120 degrees longitude using the Close Approximation method with no
atmosphere, with centrifugal effects, and with precessing at Julian date
2451545, with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'CloseApprox', ...
[true false true 2451545], 'Error')

g =

9.7601

Calculate the total normal gravity at 15,000 meters, 45 degrees latitude,
and 120 degrees longitude using the Exact method with no atmosphere,
with centrifugal effects, and with precessing at Julian date 2451545,
with errors for out-of-range inputs:

g = gravitywgs84(15000, 45, 120, 'Exact', ...
[true false true 2451545], 'Error')

g =

9.7601

Assumptions
and
Limitations

The WGS84 gravity calculations are based on the assumption of a
geocentric equipotential ellipsoid of revolution. Since the gravity
potential is assumed to be the same everywhere on the ellipsoid, there
must be a specific theoretical gravity potential that can be uniquely
determined from the four independent constants defining the ellipsoid.

3-271

gravitywgs84

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is
not necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a
geodetic height of 20,000.0 meters (approximately 65,620.0 feet). Below
this height, it gives results with submicrogal precision.

To predict and determine a satellite orbit with high accuracy, use the
EGM96 through degree and order 70.

References NIMA TR8350.2: “Department of Defense World Geodetic System 1984,
Its Definition and Relationship with Local Geodetic Systems.”

3-272

gravityzonal

Purpose Implement zonal harmonic representation of planetary gravity

Syntax [gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
degreeGravityModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
planetModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
planetModel,
degreeGravityModel)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
planetModel,
degreeGravityModel, action)

[gravityXcoord gravityYcoord,
gravityZcoord] = gravityzonal(planetCoord,
'Custom', equatorialRadius, planetaryGravitional,
zonalHarmonicCoeff, action)

Description [gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord) implements the mathematical
representation of zonal harmonic planetary gravity based on planetary
gravitational potential. For input, it takes an m-by-3 matrix that
contains planet-centered planet-fixed coordinates from the center of the
planet in meters. This function calculates the arrays of m gravity values
in the x-, y-, and z-axes of the planet-centered planet-fixed coordinates.
It uses the fourth order zonal coefficients for Earth by default.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, degreeGravityModel) uses the degree
of harmonic model.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel) uses the planetary model.

3-273

gravityzonal

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel, degreeGravityModel)
uses the degree of harmonic model and planetary model.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, planetModel, degreeGravityModel,
action) specifies the action for out-of-range input.

[gravityXcoord gravityYcoord, gravityZcoord] =
gravityzonal(planetCoord, 'Custom', equatorialRadius,
planetaryGravitional, zonalHarmonicCoeff, action) uses the
equatorial radius, planetary gravitational parameter, and zonal
harmonic coefficients for the custom planetary model.

This function does not include the potential due planet rotation, which
excludes the centrifugal effects of planetary rotation and the effects
of a precessing reference frame.

Input
Arguments

planetCoord

m-by-3 matrix that contains planet-centered planet-fixed coordinates
from the center of the planet in meters. If planetModel has a value
of 'Earth', this matrix contains Earth-centered Earth-fixed (ECEF)
coordinates.

planetModel

String that specifies the planetary model. Enter one:

• 'Mercury'

• 'Venus'

• 'Earth'

• 'Moon'

• 'Mars'

• 'Jupiter'

• 'Saturn'

3-274

gravityzonal

• 'Uranus'

• 'Neptune'

• 'Custom'

'Custom' requires you to specify your own planetary model using the
equatorialRadius, planetaryGravitional, and zonalHarmonicCoeff
parameters.

Default: 'Earth'

degreeGravityModel

Degree of harmonic model.

• 2 — Second degree, J2. Most significant or largest spherical
harmonic term, which accounts for the oblateness of a planet. 2 is
default if planetModel is 'Mercury', 'Venus', 'Moon', 'Uranus',
or 'Neptune'.

• 3— Third degree, J3. 3 is default if planetModel is 'Mars'.

• 4 — Fourth degree, J4 (default). Default is 4 if planetModel is
'Earth, 'Jupiter', 'Saturn' or 'Custom'.

Default:

equatorialRadius

Planetary equatorial radius in meters. Use this parameter only if you
specify planetModel as 'Custom'.

planetaryGravitional

Planetary gravitational parameter in meters cubed per second squared.
Use this parameter only if you specify planetModel as 'Custom'.

zonalHarmonicCoeff

3-275

gravityzonal

3-element array defining the zonal harmonic coefficients that the
function uses to calculate zonal harmonics planetary gravity. Use this
parameter only if you specify planetModel as 'Custom'.

action

String that defines action for out-of-range input. Specify one:

'Error'
'Warning'
'None' (default)

Output
Arguments

gravityXcoord

Array of m gravity values in the x-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

gravityYcoord

Array of m gravity values in the y-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

gravityZcoord

Array of m gravity values in the z-axis of the planet-centered
planet-fixed coordinates in meters per second squared.

Examples Calculate the gravity in the x-axis at the equator on the surface of Earth
using the fourth degree model with no warning actions:

gx = gravityzonal([-6378.1363e3 0 0])

gx =

9.8142

Calculate the gravity using the close approximation method at 100 m
over the geographic South Pole of Earth with error actions:

3-276

gravityzonal

[gx, gy, gz] = gravityzonal([0 0 -6356.851e3], 'Error')

gx =

0

gy =

0

gz =

9.8317

Calculate the gravity at 15000 m over the equator and 11000 m over the
geographic North Pole using a second order Mars model with warning
actions:

p = [2412.648e3 -2412.648e3 0; 0 0 3376.2e3]
[gx, gy, gz] = gravityzonal(p, 'Mars', 2, 'Warning')
p =

2412648 -2412648 0
0 0 3376200

gx =

-2.6224
0

gy =

2.6224
0

gz =

3-277

gravityzonal

0
-3.7542

Calculate the gravity at 15000 m over the equator and 11000 m over the
geographic North Pole using a custom planetary model with no actions:

p= [2412.648e3 -2412.648e3 0; 0 0 3376e3]
GM = 42828.371901e9 % m^3/s^2
Re = 3397e3 % m
Jvalues = [1.95545367944545e-3 3.14498094262035e-5 ...
-1.53773961526397e-5]
[gx, gy, gz] = gravityzonal(p, 'custom', Re, GM, ...
Jvalues, 'None')

Algorithms gravityzonal is implemented using the following planetary parameter
values for each planet:

Planet Equatorial
Radius (Re) in
Meters

Gravitational
Parameter (GM) in
m3/s2

Zonal Harmonic Coefficients
(J Values)

Earth 6378.1363e3 3.986004415e14 [0.0010826269 -0.0000025323
-0.0000016204]

Jupiter 71492.e3 1.268e17 [0.01475 0 -0.00058]

Mars 3397.2e3 4.305e13 [0.001964 0.000036]

Mercury 2439.0e3 2.2032e13 0.00006

Moon 1738.0e3 4902.799e9 0.0002027

Neptune 24764e3 6.809e15 0.004

Saturn 60268.e3 3.794e16 [0.01645 0 -0.001]

Uranus 25559.e3 5.794e15 0.012

Venus 6052.0e3 3.257e14 0.000027

3-278

gravityzonal

References Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

Fortescue, P., J. Stark, G. Swinerd, (Eds.). Spacecraft Systems
Engineering, Third Edition, Wiley & Sons, West Sussex, 2003.

Tewari, A., Atmospheric and Space Flight Dynamics Modeling and
Simulation with MATLAB and Simulink, Birkhäuser, Boston, 2007.

Alternatives Zonal Harmonic Gravity Model block

See Also gravitywgs84 | geoidegm96

3-279

Aero.Animation.hide

Purpose Hide animation figure

Syntax hide(h)
h.hide

Description hide(h) and h.hide hide (close) the figure for the animation object h.
Use Aero.Animation.show to redisplay the animation object figure.

Input
Arguments

h Animation object.

Examples Hide the animation object figure that the Aero.Animation.show
method displays.

h=Aero.Animation;
h.show;
h.hide;

3-280

igrf11magm

Purpose Calculate Earth’s magnetic field using 11th generation of International
Geomagnetic Reference Field

Syntax [mag_field_vector, hor_intensity, declination, inclination,
total_intensity, mag_field_sec_variation,
sec_variation_horizontal, sec_variation_declination,
sec_variation_inclination,
sec_variation_total] = igrf11magm(height, latitude,
longitude, decimal_year)

Description [mag_field_vector, hor_intensity, declination,
inclination, total_intensity, mag_field_sec_variation,
sec_variation_horizontal, sec_variation_declination,
sec_variation_inclination, sec_variation_total] =
igrf11magm(height, latitude, longitude, decimal_year)
calculates the Earth’s magnetic field and the secular variation at a
specific location and time. This function uses the 11th generation of the
International Geomagnetic Reference Field (IGRF-11).

Tips • The igrf11magm function is valid between the heights of –1000
meters to 600000 meters.

• The igrf11magm function is valid between the years of 1900 and 2015.

• This function has the limitations of the International Geomagnetic
Reference Field (IGRF).

Input
Arguments

height

Scalar distance, in meters, from the surface of the Earth.

latitude

Scalar geodetic latitude, in degrees. North latitude is positive, south
latitude is negative.

longitude

3-281

igrf11magm

Scalar geodetic longitude, in degrees. East longitude is positive, west
longitude is negative.

decimal_year

Scalar year, in decimal format. This value is the desired year to include
any fraction of the year that has already passed.

Output
Arguments

mag_field_vector

Magnetic field vector, in nanotesla (nT). Z is the vertical component
(+ve down).

hor_intensity

Horizontal intensity, in nanotesla (nT).

declination

Declination, in degrees (+ve east).

inclination

Inclination, in degrees (+ve down).

total_intensity

Total intensity, in nanotesla (nT).

mag_field_sec_variation

Secular variation in magnetic field vector, in nT/year. Z is the vertical
component (+ve down).

sec_variation_horizontal

Secular variation in horizontal intensity, in nT/year.

sec_variation_declination

Secular variation in declination, in minutes/year (+ve east).

3-282

igrf11magm

sec_variation_inclination

Secular variation in inclination, in minutes/year (+ve down).

sec_variation_total

Secular variation in total intensity, in nT/year.

Examples Calculate the magnetic model 1000 meters over Natick, Massachusetts
on July 4, 2005 using IGRF-11:

[XYZ, H, DEC, DIP, F] = igrf11magm(1000, 42.283, -71.35, ...

decyear(2005,7,4))

XYZ =

1.0e+004 *

1.8982 -0.5176 4.9558

H =

1.9675e+004

DEC =

-15.2524

DIP =

68.3467

F =

5.3320e+004

3-283

igrf11magm

References Lowes, F. J. “The International Geomagnetic
Reference Field: A ’Health’ Warning.” January, 2010.
http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html

Blakely, R. J. Potential Theory in Gravity & Magnetic Applications,
Cambridge, UK: Cambridge University Press, 1996.

3-284

http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html

Aero.Animation.initialize

Purpose Create animation object figure and axes and build patches for bodies

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize create a figure and axes for the
animation object h, and builds patches for the bodies associated with
the animation object. If there is an existing figure, this function

1 Clears out the old figure and its patches.

2 Creates a new figure and axes with default values.

3 Repopulates the axes with new patches using the surface to patch
data from each body.

Input
Arguments

h Animation object.

Examples Initialize the animation object, h.

h = Aero.Animation;
h.initialize();

3-285

initialize (Aero.FlightGearAnimation)

Purpose Set up FlightGear animation object

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize set up the FlightGear version, IP
address, and socket for the FlightGear animation object h.

Examples Initialize the animation object, h.

h = Aero.FlightGearAnimation;
h.initialize();

See Also delete | play | GenerateRunScript | update

3-286

initialize (Aero.VirtualRealityAnimation)

Purpose Create and populate virtual reality animation object

Syntax initialize(h)
h.initialize

Description initialize(h) and h.initialize create a virtual reality animation
world and populate the virtual reality animation object h. If a previously
initialized virtual reality animation object existgs, and that object has
user-specified data, this function saves the previous object to be reset
after the initialization.

Examples Initialize the virtual reality animation object, h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

See Also delete | play

3-287

Aero.Animation.initIfNeeded

Purpose Initialize animation graphics if needed

Syntax initIfNeeded(h)
h.initIfNeeded

Description initIfNeeded(h) and h.initIfNeeded initialize animation object
graphics if necessary.

Input
Arguments

h Animation object.

Examples Initialize the animation object graphics of h as needed.

h=Aero.Animation;
h.initIfNeeded;

3-288

juliandate

Purpose Julian date calculator

Syntax jd = juliandate(v)
jd = juliandate(s,f)
jd = juliandate(y,mo,d)
jd = juliandate([y,mo,d])
jd = juliandate(y,mo,d,h,mi,s)
jd = juliandate([y,mo,d,h,mi,s])

Description jd = juliandate(v) converts one or more date vectors, v, into Julian
date, jd. Input v can be an m-by-6 or m-by-3 matrix containing m full or
partial date vectors, respectively. juliandate returns a column vector
of m Julian dates, which are the number of days and fractions since
noon Universal Time on January 1, 4713 BCE.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

jd = juliandate(s,f) converts one or more date strings, s, into
Julian date, jd, using format string f. s can be a character array,
where each row corresponds to one date string, or a one-dimensional
cell array of strings. juliandate returns a column vector of m Julian
dates, where m is the number of strings in s.

All of the date strings in s must have the same format f, composed of
the same date format symbols as datestr. juliandate does not accept
formats containing the letter Q.

If the format does not contain enough information to compute a date
number, then:

• Hours, minutes, and seconds default to 0.

• Days default to 1.

• Months default to January.

• Years default to the current year.

3-289

juliandate

Date strings with two-character years are interpreted to be within 100
years of the current year.

jd = juliandate(y,mo,d) and jd = juliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d
(year,month,day) arrays. Specify y, mo, and d as one-dimensional arrays
of the same length or scalar values.

jd = juliandate(y,mo,d,h,mi,s) and jd =
juliandate([y,mo,d,h,mi,s]) return the Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. Specify the six input
arguments as either one-dimensional arrays of the same length or
scalar values.

Examples Calculate Julian date for May 24, 2005:

jd = juliandate('24-May-2005','dd-mmm-yyyy')

jd =

2.4535e+006

Calculate Julian date for December 19, 2006:

jd = juliandate(2006,12,19)

jd =

2.4541e+006

Calculate Julian date for October 10, 2004, at 12:21:00 p.m.:

jd = juliandate(2004,10,10,12,21,0)

jd =

2.4533e+006

3-290

juliandate

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of Julian date does not take into account leap seconds.

See Also decyear | leapyear | mjuliandate

3-291

leapyear

Purpose Determine leap year

Syntax ly = leapyear(year)

Description ly = leapyear(year) determines whether one or more years are leap
years or not. The output, ly, is a logical array. year should be numeric.

Examples Determine whether 2005 is a leap year:

ly = leapyear(2005)

ly =

0

Determine whether 2000, 2005, and 2020 are leap years:

ly = leapyear([2000 2005 2020])

ly =

1 0 1

Assumptions
and
Limitations

The determination of leap years is done by Gregorian calendar rules.

See Also decyear | juliandate | mjuliandate

3-292

lla2ecef

Purpose Convert geodetic coordinates to Earth-centered Earth-fixed (ECEF)
coordinates

Syntax p = lla2ecef(lla)
p = lla2ecef(lla, model)
p = lla2ecef(lla, f, Re)

Description p = lla2ecef(lla) converts an m-by-3 array of geodetic coordinates
(latitude, longitude and altitude), lla, to an m-by-3 array of ECEF
coordinates, p. lla is in [degrees degrees meters]. p is in meters. The
default ellipsoid planet is WGS84.

p = lla2ecef(lla, model) is an alternate method for converting the
coordinates for a specific ellipsoid planet. Currently only 'WGS84' is
supported for model.

p = lla2ecef(lla, f, Re) is another alternate method for converting
the coordinates for a custom ellipsoid planet defined by flattening, f,
and the equatorial radius, Re, in meters.

Examples Determine ECEF coordinates at a latitude, longitude, and altitude:

p = lla2ecef([0 45 1000])

p =

1.0e+006 *

4.5107 4.5107 0

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying WGS84 ellipsoid model:

p = lla2ecef([0 45 1000; 45 90 2000], 'WGS84')

p =

3-293

lla2ecef

1.0e+006 *

4.5107 4.5107 0
0.0000 4.5190 4.4888

Determine ECEF coordinates at multiple latitudes, longitudes, and
altitudes, specifying custom ellipsoid model:

f = 1/196.877360;
Re = 3397000;
p = lla2ecef([0 45 1000; 45 90 2000], f, Re)

p =

1.0e+006 *

2.4027 2.4027 0
0.0000 2.4096 2.3852

See Also ecef2lla | geoc2geod | geod2geoc

3-294

lla2flat

Purpose Estimate flat Earth position from geodetic latitude, longitude, and
altitude

Syntax flatearth_pos = lla2flat(lla, llo, psio, href)
flatearth_pos = lla2flat(lla, llo, psio, href,

ellipsoidModel)
flatearth_pos = lla2flat(lla, llo, psio, href, flattening,

equatorialRadius)

Description flatearth_pos = lla2flat(lla, llo, psio, href) estimates an
array of flat Earth coordinates, flatearth_pos, from an array of
geodetic coordinates, lla. This function estimates the flatearth_pos
value with respect to a reference location that llo, psio, and href
define.

flatearth_pos = lla2flat(lla, llo, psio, href,
ellipsoidModel) estimates the coordinates for a specific ellipsoid
planet.

flatearth_pos = lla2flat(lla, llo, psio, href, flattening,
equatorialRadius) estimates the coordinates for a custom ellipsoid
planet defined by flattening and equatorialRadius.

Tips • This function assumes that the flight path and bank angle are zero.

• This function assumes that the flat Earth z-axis is normal to the
Earth only at the initial geodetic latitude and longitude. This
function has higher accuracy over small distances from the initial
geodetic latitude and longitude. It also has higher accuracy at
distances closer to the equator. The function calculates a longitude
with higher accuracy when the variations in latitude are smaller.
Additionally, longitude is singular at the poles.

Input
Arguments

lla

m-by-3 array of geodetic coordinates (latitude, longitude, and altitude),
in [degrees, degrees, meters].

3-295

lla2flat

llo

Reference location, in degrees, of latitude and longitude, for the origin
of the estimation and the origin of the flat Earth coordinate system.

psio

Angular direction of flat Earth x-axis (degrees clockwise from north),
which is the angle in degrees used for converting flat Earth x and y
coordinates to the North and East coordinates.

href

Reference height from the surface of the Earth to the flat Earth frame
with regard to the flat Earth frame, in meters.

ellipsoidModel

String that specifies the specific ellipsoid planet model. This function
supports only 'WGS84'.

Default: WGS84

flattening

Custom ellipsoid planet defined by flattening.

equatorialRadius

Planetary equatorial radius, in meters.

Output
Arguments

flatearth_pos

Flat Earth position coordinates, in meters.

Examples Estimate coordinates at latitude, longitude, and altitude:

p = lla2flat([0.1 44.95 1000], [0 45], 5, -100)

p =

3-296

lla2flat

1.0e+004 *

1.0530 -0.6509 -0.0900

Estimate coordinates at multiple latitudes, longitudes, and altitudes,
specifying the WGS84 ellipsoid model:

p = lla2flat([0.1 44.95 1000; -0.05 45.3 2000], [0 45], 5, -100, 'WGS84')

p =

1.0e+004 *

1.0530 -0.6509 -0.0900

-0.2597 3.3751 -0.1900

Estimate coordinates at multiple latitudes, longitudes, and altitudes,
specifying a custom ellipsoid model:

f = 1/196.877360;

Re = 3397000;

p = lla2flat([0.1 44.95 1000; -0.05 45.3 2000], [0 45], 5, -100, f, Re)

p =

1.0e+004 *

0.5588 -0.3465 -0.0900

-0.1373 1.7975 -0.1900

Algorithms The estimation begins by finding the small changes in latitude and
longitude from the output latitude and longitude minus the initial
latitude and longitude.

3-297

lla2flat

d

d

  
 

= −
= −

0

0

To convert geodetic latitude and longitude to the North and East
coordinates, the estimation uses the radius of curvature in the prime
vertical (RN) and the radius of curvature in the meridian (RM). RN and
RM are defined by the following relationships:

R
R

f f

R R
f f

f f

N

M N

=
− −

= − −
− −

1 2

1 2

1 2

2 2
0

2

2 2
0

()sin

()

()sin





where (R) is the equatorial radius of the planet and f is the flattening
of the planet.

Small changes in the North (dN) and East (dE) positions are
approximated from small changes in the North and East positions by

dN
d

R

dE
d

R

M

N

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟







atan

atan

1

1

0cos

With the conversion of the North and East coordinates to the flat Earth
x and y coordinates, the transformation has the form of

p
p

N
E

x

y

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

cos sin
sin cos
 
 

where

3-298

lla2flat

()
is the angle in degrees clockwise between the x-axis and north.

The flat Earth z-axis value is the negative altitude minus the reference
height (href).

p h hz ref= − −

References Etkin, B., Dynamics of Atmospheric Flight. NewYork: John Wiley &
Sons, 1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd
ed. New York: John Wiley & Sons, 2003.

See Also flat2lla

3-299

load (Aero.Body)

Purpose Get geometry data from source

Syntax load(h, bodyDataSrc)
h.load(bodyDataSrc)
load(h, bodyDataSrc, geometrysource)
h.load(bodyDataSrc, geometrysource)

Description load(h, bodyDataSrc) and h.load(bodyDataSrc) load the graphics
data from the body graphics file. This command assumes a default
geometry source type set to Auto.

load(h, bodyDataSrc, geometrysource) and h.load(bodyDataSrc,
geometrysource) load the graphics data from the body graphics file,
bodyDataSrc, into the face, vertex, and color data of the animation
body object h. Then, when axes ax is available, you can use this data
to generate patches with generatePatches. geometrysource is the
geometry source type for the body.

By default geometrysource is set to Auto, which recognizes .mat
extensions as MAT-files, .ac extensions as Ac3d files, and structures
containing fields of name, faces, vertices, and cdata as MATLAB
variables. If you want to use alternate file extensions or file types, enter
one of the following:

• Auto

• Variable

• MatFile

• Ac3d

• Custom

Examples Load the graphic data from the graphic data file, pa24-250_orange.ac,
into b.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');

3-300

load (Aero.Body)

See Also generatePatches | move | update

3-301

machnumber

Purpose Compute Mach number using velocity and speed of sound

Syntax mach = machnumber(v, a)

Description mach = machnumber(v, a) computes m Mach numbers, mach, from an
m-by-3 array of velocities, v, and an array of m speeds of sound, a. v and
a must have the same length units.

Examples Determine the Mach number for velocity and speed of sound in feet
per second:

mach = machnumber([84.3905 33.7562 10.1269], 1116.4505)

mach =

0.0819

Determine the Mach number for velocity and speed of sound in meters
per second:

mach = machnumber([25.7222 10.2889 3.0867], [340.2941 295.0696])

mach =

0.0819 0.0945

Determine the Mach number for velocity and speed of sound in knots:

mach = machnumber([50 20 6; 5 0.5 2], [661.4789 573.5694])

mach =

0.0819
0.0094

3-302

machnumber

See Also airspeed | alphabeta | dpressure

3-303

mjuliandate

Purpose Modified Julian date calculator

Syntax mjd = mjuliandate(v)
mjd = mjuliandate(s,f)
mjd = mjuliandate(y,mo,d)
mjd = mjuliandate([y,mo,d])
mjd = mjuliandate(y,mo,d,h,mi,s)
mjd = mjuliandate([y,mo,d,h,mi,s])

Description mjd = mjuliandate(v) converts one or more date vectors, v, into
modified Julian date, mjd. Input v can be an m-by-6 or m-by-3 matrix
containing m full or partial date vectors, respectively. mjuliandate
returns a column vector of m modified Julian dates. Modified Julian
dates begin at midnight rather than noon, and the first two digits of its
corresponding Julian date are removed.

A date vector contains six elements, specifying year, month, day,
hour, minute, and second. A partial date vector has three elements,
specifying year, month, and day. Each element of v must be a positive
double-precision number.

mjd = mjuliandate(s,f) converts one or more date strings, s,
into modified Julian date, mjd, using format string f. s can be a
character array, where each row corresponds to one date string, or a
one-dimensional cell array of strings. mjuliandate returns a column
vector of m modified Julian dates, where m is the number of strings in s.

All of the date strings in s must have the same format f, composed of
the same date format symbols as the datestr function. mjuliandate
does not accept formats containing the letter Q.

If a format does not contain enough information to compute a date
number, then:

• Hours, minutes, and seconds default to 0.

• Days default to 1.

• Months default to January.

• Years default to the current year.

3-304

mjuliandate

Date strings with two-character years are interpreted to be within 100
years of the current year.

mjd = mjuliandate(y,mo,d) and mjd = mjuliandate([y,mo,d])
return the decimal year for corresponding elements of the y,mo,d
(year,month,day) arrays. Specify y, mo, and d as one-dimensional arrays
of the same length or scalar values.

mjd = mjuliandate(y,mo,d,h,mi,s) and mjd =
mjuliandate([y,mo,d,h,mi,s]) return the modified Julian
dates for corresponding elements of the y,mo,d,h,mi,s
(year,month,day,hour,minute,second) arrays. Specify the six arguments
as one-dimensional arrays of the same length or scalar values.

Examples Calculate the modified Julian date for May 24, 2005:

mjd = mjuliandate('24-May-2005','dd-mmm-yyyy')

mjd =

53514

Calculate the modified Julian date for December 19, 2006:

mjd = mjuliandate(2006,12,19)

mjd =

54088

Calculate the modified Julian date for October 10, 2004, at 12:21:00
p.m.:

mjd = mjuliandate(2004,10,10,12,21,0)

mjd =

5.3289e+004

3-305

mjuliandate

Assumptions
and
Limitations

This function is valid for all common era (CE) dates in the Gregorian
calendar.

The calculation of modified Julian date does not take into account leap
seconds.

See Also decyear | juliandate | leapyear

3-306

moonLibration

Purpose Moon librations

Syntax angles= moonLibration(ephemerisTime)

angles= moonLibration(ephemerisTime,ephemerisModel)

angles= moonLibration(ephemerisTime,ephemerisModel,action)

[angles,rates] = earthNutation(___)

Description angles= moonLibration(ephemerisTime) implements the Moon
libration angles for ephemerisTime.

The function uses the Chebyshev coefficients that the NASA Jet
Propulsion Laboratory provides.

angles= moonLibration(ephemerisTime,ephemerisModel) uses the
ephemerisModel coefficients to implement these values.

angles= moonLibration(ephemerisTime,ephemerisModel,action)
uses action to determine error reporting.

[angles,rates] = earthNutation(___) implements the Moon
libration angles and rates using any combination of the input arguments
in the previous syntaxes.

Input
Arguments

ephemerisTime - Julian dates
scalar | 2-element vector | column vector | M-by-2 matrix

Julian dates for which the positions are calculated, specified as one
of the following:

• Scalar

Specify one fixed Julian date.

• 2-element vector

Specify the Julian date in multiple parts. The first element is the
Julian date for a specific epoch that is the most recent midnight at or

3-307

moonLibration

before the interpolation epoch. The second element is the fractional
part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus
the second element cannot exceed the maximum Julian date.

• Column vector

Specify a column vector with M elements, where M is the number
of Julian dates.

• M-by-2 matrix

Specify a matrix, where M is the number of Julian dates and the
second column contains the elapsed days (Julian epoch date/elapsed
day pairs).

Data Types
double

ephemerisModel - Ephemerides coefficients
`405' (default) | '421'|'423'

Ephemerides coefficients, specified as one of these ephemerides defined
by the Jet Propulsion Laboratory:

• '405'

Released in 1998. This ephemerides takes into account the Julian
date range 2305424.50 (December 9, 1599) to 2525008.50 (February
20, 2201).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

• '421'

Released in 2008. This ephemerides takes into account the Julian
date range 2414992.5 (December 4, 1899) to 2469808.5 (January
2, 2050).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

3-308

moonLibration

• '423'

Released in 2010. This ephemerides takes into account the Julian
date range 2378480.5 (December 16, 1799) to 2524624.5 (February
1, 2200).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 2.0, adopted in 2010.

Data Types
char

action - Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range, specified as a string as
one of these string values:

Value Description

'None' No action.

'Warning' Warning in the MATLAB Command Window,
model simulation continues.

'Error' MATLAB returns an exception, model
simulation stops.

Data Types
char

Output
Arguments

angles - Moon libration angles
M-by-3 numeric array

Moon libration angles, specified as an M-by-3 numeric array. M is the
number of Julian dates, in rows. The columns contain the Euler angles
(φ θ ψ) for Moon attitude, in radians.

If the input arguments include multiple Julian dates or epochs, this
array has the same number of rows as the ephemerisTime input.

3-309

moonLibration

rates - Moon libration angular rates
M-by-3 numeric array

Moon libration angular rates, specified as an M-by-3 numeric array. M
is the number of Julian dates, in rows. The columns contain the Moon
libration Euler angular rates (ω), in radians/day.

If the input arguments include multiple Julian dates or epochs, this
array has the same number of rows as the ephemerisTime input.

Examples Implement Libration Angles of Moon

Implement libration angles of the Moon for December 1, 1990 with
DE405. Use the juliandate function to calculate the input Julian date
value.

angles = moonLibration(juliandate(1990,12,1))

angles =
1.0e+03 *
0.0001 0.0004 1.8010

Implement Libration Angles and Rates for Moon

Specify the ephemerides (DE421) and use the juliandate function for
the date (January 1, 2000) to calculate both the Moon libration angles
and rates.

[angles,rates] = moonLibration([2451544.5 0.5],'421')

angles =
1.0e+03 *
-0.0001 0.0004 2.5643

rates =
-0.0001 0.0000 0.2301

3-310

moonLibration

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs, “The Planetary and
Lunar Ephemeris DE 421,” JPL Interplanetary Network Progress
Report 24-178, 2009.

[2] Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

See Also juliandate | earthNutation | planetEphemeris

External
Web Sites

• http://ssd.jpl.nasa.gov/?planet_eph_export
• http://syrte.obspm.fr/jsr/journees2010/powerpoint/folkner.pdf

3-311

http://ssd.jpl.nasa.gov/?planet_eph_export
http://syrte.obspm.fr/jsr/journees2010/powerpoint/folkner.pdf

move (Aero.Body)

Purpose Change animation body position and orientation

Syntax move(h, translation, rotation)
h.move(translation,rotation)

Description move(h, translation, rotation) and
h.move(translation,rotation) set a new position and orientation for
the body object h. translation is a 1-by-3 matrix in the aerospace
body x-y-z coordinate system. rotation is a 1-by-3 matrix, in
radians, that specifies the rotations about the right-hand x-y-z
sequence of coordinate axes. The order of application of the rotation is
z-y-x (r-q-p).

Examples Change animation body position to newpos and newrot.

h = Aero.Body;
h.load('ac3d_xyzisrgb.ac','Ac3d');
newpos = h.Position + 1.00;
newrot = h.Rotation + 0.01;
h.move(newpos,newrot);

See Also load

3-312

move (Aero.Node)

Purpose Change node translation and rotation

Syntax move(h,translation,rotation)
h.move(translation,rotation)

Description move(h,translation,rotation) and h.move(translation,rotation)
set a new position and orientation for the node object h. translation
is a 1-by-3 matrix in the aerospace body x-y-z coordinate system
or another coordinate system. In the latter case, you can use the
CoordTransformFcn function to move it into an aerospace body. The
defined aerospace body coordinate system is defined relative to the
screen as x-left, y-in, z-down.

rotation is a 1-by-3 matrix, in radians, that specifies the rotations
about the right-hand x-y-z sequence of coordinate axes. The order of
application of the rotation is z-y-x (r-q-p). This function uses the
CoordTransformFcn to apply the translation and rotation from the
input coordinate system to the aerospace body. The function then moves
the translation and rotation from the aerospace body to the VRML
x-y-z coordinates. The defined VRML coordinate system is defined
relative to the screen as x-right, y-up, z-out.

Examples Move the Lynx body. This example uses the Simulink 3D Animation
vrnode/getfield function to retrieve the translation and rotation.
These coordinates are those used in the Simulink 3D Animation
software.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

newtrans = getfield(h.Nodes{4}.VRNode,'translation') + 1.0;

newrot = getfield(h.Nodes{4}.VRNode,'rotation') + [.2 0.01 0.01 0.01];

h.Nodes{4}.move(newtrans,newrot);

3-313

move (Aero.Node)

Limitations This function cannot get the node position in aerospace body
coordinates; it needs to use the CoordTransformFcn to do so.

This function cannot set a viewpoint position or orientation (see
addViewpoint).

See Also addNode

3-314

Aero.Animation.moveBody

Purpose Move body in animation object

Syntax moveBody(h,idx,translation,rotation)
h.moveBody(idx,translation,rotation)

Description moveBody(h,idx,translation,rotation) and
h.moveBody(idx,translation,rotation) set a new position and
attitude for the body specified with the index idx in the animation object
h. translation is a 1-by-3 matrix in the aerospace body coordinate
system. rotation is a 1-by-3 matrix, in radians, that specifies the
rotations about the right-hand x-y-z sequence of coordinate axes. The
order of application of the rotation is z-y-x (R-Q-P).

Input
Arguments

h Animation object.

translation 1-by-3 matrix in the aerospace body coordinate
system.

rotation 1-by-3 matrix, in radians, that specifies the
rotations about the right-hand x-y-z sequence
of coordinate axes.

idx Body specified with this index.

Examples Move the body with the index 1 to position offset from the original by
+ [0 0 -3] and rotation, rot1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
pos1 = h.Bodies{1}.Position;
rot1 = h.Bodies{1}.Rotation;
h.moveBody(1,pos1 + [0 0 -3],rot1);

3-315

Node (Aero.Node)

Purpose Create node object for use with virtual reality animation

Syntax h = Aero.Node

Description h = Aero.Node creates a node object for use with virtual reality
animation.

See Aero.Node for further details.

See Also Aero.Node

3-316

nodeInfo (Aero.VirtualRealityAnimation)

Purpose Create list of nodes associated with virtual reality animation object

Syntax nodeInfo(h)
h.nodeInfo
n = nodeInfo(h)
n = h.nodeInfo

Description nodeInfo(h) and h.nodeInfo create a list of nodes associated with the
virtual reality animation object, h.

n = nodeInfo(h) and n = h.nodeInfo create a cell array (n) that
contains the node information. The function stores the information
in a cell array as follows:

N{1,n} = Node Index
N{2,n} = Node Name
N{3,n} = Node Type

where n is the number of nodes. You might want to use this function
to find an existing node by name and then perform a certain action
on it using the node index.

Examples
Create list of nodes associated with virtual reality animation object, h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

h.initialize();

h.nodeInfo;

See Also addNode

3-317

planetEphemeris

Purpose Position and velocity of astronomical objects

Syntax position= planetEphemeris(ephemerisTime,center,target)

position = planetEphemeris(ephemerisTime,center,target,
ephemerisModel)

position = planetEphemeris(ephemerisTime,center,target,
ephemerisModel,units)

position= planetEphemeris(ephemerisTime,center,target,
ephemerisModel,units,action)

[position,velocity] = planetEphemeris(___)

Description position= planetEphemeris(ephemerisTime,center,target)
implements the position of the target object relative to the specified
center object for a given Julian date ephemerisTime. By default, the
function implements the position based on the DE405 ephemerides
in units of km.

The function uses the Chebyshev coefficients that the NASA Jet
Propulsion Laboratory provides.

position = planetEphemeris(ephemerisTime,center,target,
ephemerisModel) uses the ephemerisModel coefficients to implement
these values.

position = planetEphemeris(ephemerisTime,center,target,
ephemerisModel,units) specifies the units for these values.

position= planetEphemeris(ephemerisTime,center,target,
ephemerisModel,units,action) uses action to determine error
reporting.

[position,velocity] = planetEphemeris(___) implements the
position and velocity of a the target object relative to the specified

3-318

planetEphemeris

center for a given Julian date ephemerisTime using any of the input
arguments in the previous syntaxes.

Input
Arguments

ephemerisTime - Julian date
scalar | 2-element vector | column vector | M-by-2 matrix

Julian date for which the positions are calculated, specified as one of
the following:

• Scalar

Specify one fixed Julian date.

• 2-element vector

Specify the Julian date in multiple parts. The first element is the
Julian date for a specific epoch that is the most recent midnight at or
before the interpolation epoch. The second element is the fractional
part of a day elapsed between the first element and epoch. The
second element must be positive. The value of the first element plus
the second element cannot exceed the maximum Julian date.

• Column vector

Specify a column vector with M elements, where M is the number of
fixed Julian dates.

• M-by-2 matrix

Specify a matrix, where M is the number of Julian dates and the
second column contains the elapsed days (Julian epoch date/elapsed
day pairs).

Data Types
double

center - Reference body (astronomical object) or point of
reference
'Sun' | 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' |
'Jupiter' | 'Saturn' | 'Uranus' | 'Neptune' | 'Pluto' |
'SolarSystem' | 'EarthMoon'

3-319

planetEphemeris

Reference body (astronomical object) or point of reference from which to
measure the target barycenter position and velocity.

Data Types
char

target - Target body (astronomical object) or point of reference
'Sun' | 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' |
'Jupiter' | 'Saturn' | 'Uranus' | 'Neptune' | 'Pluto' |
'SolarSystem' | 'EarthMoon'

Target body (astronomical object) or point of reference of the barycenter
position and velocity measurement.

Data Types
char

ephemerisModel - Ephemerides coefficients
`405' (default) | '421' | '423'

Ephemerides coefficients, specified as one of these ephemerides defined
by the Jet Propulsion Laboratory:

• '405'

Released in 1998. This ephemerides takes into account the Julian
date range 2305424.50 (December 9, 1599) to 2525008.50 (February
20, 2201).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

• '421'

Released in 2008. This ephemerides takes into account the Julian
date range 2414992.5 (December 4, 1899) to 2469808.5 (January
2, 2050).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 1.0, adopted in 1998.

• '423'

3-320

planetEphemeris

Released in 2010. This ephemerides takes into account the Julian
date range 2378480.5 (December 16, 1799) to 2524624.5 (February
1, 2200).

This function calculates these ephemerides with respect to the
International Celestial Reference Frame version 2.0, adopted in 2010.

Data Types
char

units - Output units
'km' (default) | 'AU'

Output units for position and velocity, specified as 'km' for km and
km/s or 'AU' for astronomical units or AU/day.

Data Types
char

action - Function behavior
'Error' (default) | 'None' | 'Warning'

Function behavior when inputs are out of range.

Value Description

'None' No action.

'Warning' Warning in the MATLAB Command Window,
model simulation continues.

'Error' MATLAB returns an exception, model
simulation stops.

Data Types
char

3-321

planetEphemeris

Output
Arguments

position - Barycenter position
M-by-3 vector

Barycenter position of the target object relative to the barycenter of
the center object, returned as anM-by-3 vector, whereM is the number
of Julian dates. The 3 vector contains the x, y, and z of the position
along the International Celestial Reference Frame (ICRF). Units are
km or astronomical units (AU). If input arguments include multiple
Julian dates or epochs, this vector has the same number of rows as
the ephemerisTime input.

velocity - Barycenter velocity
M-by-3 vector

Barycenter velocity of the target object relative to the barycenter of the
center object, returned as an M-by-3 vector, where M is the number
of Julian dates. The 3 vector contains the velocity in the x, y, and z
directions along the ICRF. Velocity of the Units are km or astronomical
units (AU). If the input includes multiple Julian dates or epochs, this
vector has the same number of rows as the ephemerisTime input.

Examples Implement Position of Moon

Implement the position of the Moon with respect to the Earth for
December 1, 1990 with DE405:

position = planetEphemeris(juliandate(1990,12,1),'Earth','Moon')

position =
1.0e+05 *
2.3112 2.3817 1.3595

Implement Position and Velocity for Saturn

Implement the position and velocity for Saturn with respect to the
Solar System barycenter for noon on January 1, 2000 using DE421
and AU units:

[position,velocity] = planetEphemeris([2451544.5 0.5],...
'SolarSystem','Saturn','421','AU')

3-322

planetEphemeris

position =
6.3993 6.1720 2.2738

velocity =
-0.0043 0.0035 0.0016

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs, “The Planetary and
Lunar Ephemeris DE 421,” JPL Interplanetary Network Progress
Report 24-178, 2009.

[2] Ma, C. et al., “The International Celestial Reference Frame as
Realized by Very Long Baseline Interferometry,” Astronomical Journal,
Vol. 116, 516–546, 1998.

[3] Vallado, D. A., Fundamentals of Astrodynamics and Applications,
McGraw-Hill, New York, 1997.

See Also juliandate | moonLibration | earthNutation

External
Web Sites

• http://ssd.jpl.nasa.gov/?planet_eph_export

3-323

http://ssd.jpl.nasa.gov/?planet_eph_export

Aero.Animation.play

Purpose Animate Aero.Animation object given position/angle time series

Syntax play(h)
play.h

Description play(h) and play.h animate the loaded geometry in h for the
current TimeseriesDataSource at the specified rate given by the
'TimeScaling' property (in seconds of animation data per second of
wall-clock time) and animated at a certain number of frames per second
using the 'FramesPerSecond' property.

The time series data is interpreted according to the
'TimeseriesSourceType' property, which can be one
of:

'Timeseries' MATLAB time series data with six
values per time:

x y z phi theta psi

The values are resampled.

'Simulink.Timeseries' Simulink.Timeseries (Simulink signal
logging):

• First data item

x y z

• Second data item

phi theta psi

3-324

Aero.Animation.play

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: x y z

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data:
time x y z phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
x z theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.

• TStart and TFinal cannot be Inf or NaN.

• TFinal must be greater than or equal to TStart.

3-325

Aero.Animation.play

• TFinal cannot be greater than the maximum Timeseries time.

• TStart cannot be less than the minimum Timeseries time.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

Time is in seconds, position values are in the same units as the geometry
data loaded into the animation object, and all angles are in radians.

Note If there is a 15% difference between the expected time advance
and the actual time advance, this method will generate the following
warning:

TimerPeriod has been set to <value>. You may wish to modify the animation

TimeScaling and FramesPerSecond properties to compensate for the

millisecond limit of the TimerPeriod. See documentation for details.

Input
Arguments

h Animation object.

3-326

Aero.Animation.play

Examples Animate the body, idx1, for the duration of the time series data.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
h.show();
h.play();

3-327

play (Aero.FlightGearAnimation)

Purpose Animate FlightGear flight simulator using given position/angle time
series

Syntax play(h)
h.play

Description play(h) and h.play animate FlightGear flight simulator using
specified time series data in h. The time series data can be set in h by
using the property 'TimeseriesSource'.

The time series data, stored in the property 'TimeseriesSource', is
interpreted according to the 'TimeseriesSourceType' property, which
can be one of:

'Timeseries' MATLAB time series data with six
values per time:

latitude longitude altitude phi
theta psi

The values are resampled.

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: latitude
longitude altitude

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

3-328

play (Aero.FlightGearAnimation)

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data: time
latitude longitude altitude phi
theta psi. If a double-precision
array of 8 or more columns is in
'TimeseriesSource', the first 7
columns are used as 6-DoF data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
latitude altitude theta. If a
double-precision array of 5 or more
columns is in 'TimeseriesSource',
the first 4 columns are used as 3-DoF
data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

3-329

play (Aero.FlightGearAnimation)

Time is in seconds, position values are in the same units as
the geometry model to be used by FlightGear (see the property
'GeometryModelName'), and all angles are in radians. A possible result
of using incorrect units is the early termination of the FlightGear flight
simulator.

Note If there is a 15% difference between the expected time advance
and the actual time advance, this method will generate the following
warning:

TimerPeriod has been set to <value>. You may wish to modify the animation

TimeScaling and FramesPerSecond properties to compensate for the

millisecond limit of the TimerPeriod. See documentation for details.

The play method supports FlightGear animation objects with custom
timers.

Limitations The following are limitations for the TStart and TFinal values:

• TStart and TFinal must be numeric.

• TStart and TFinal cannot be Inf or NaN.

• TFinal must be greater than or equal to TStart.

• TFinal cannot be greater than the maximum Timeseries time.

• TStart cannot be less than the minimum Timeseries time.

Examples Animate FlightGear flight simulator using the given 'Array3DoF'
position/angle time series data:

data = [86.2667 -2.13757034184404 7050.896596 -0.135186746141248;...

87.2833 -2.13753906554384 6872.545051 -0.117321084678936;...

88.2583 -2.13751089592972 6719.405713 -0.145815609299676;...

89.275 -2.13747984652232 6550.117118 -0.150635248762596;...

90.2667 -2.13744993157894 6385.05883 -0.143124782831999;...

3-330

play (Aero.FlightGearAnimation)

91.275 -2.13742019116849 6220.358163 -0.147946202530756;...

92.275 -2.13739055547779 6056.906647 -0.167529704309343;...

93.2667 -2.13736104196014 5892.356118 -0.152547361677911;...

94.2583 -2.13733161570895 5728.201718 -0.161979312941906;...

95.2583 -2.13730231163081 5562.923808 -0.122276929636682;...

96.2583 -2.13727405475022 5406.736322 -0.160421658944379;...

97.2667 -2.1372440001805 5239.138477 -0.150591353731908;...

98.2583 -2.13721598764601 5082.78798 -0.147737722951605];

h = fganimation

h.TimeseriesSource = data

h.TimeseriesSourceType = 'Array3DoF'

play(h)

Animate FlightGear flight simulator using the custom timer,
MyFGTimer.

h.SetTimer('MyFGTimer')
h.play('MyFGTimer')

See Also GenerateRunScript | initialize | update

3-331

play (Aero.VirtualRealityAnimation)

Purpose Animate virtual reality world for given position and angle in time series
data

Syntax play(h)
h.play

Description play(h) and h.play animate the virtual reality world in h for the
current TimeseriesDataSource at the specified rate given by the
'TimeScaling' property (in seconds of animation data per second of
wall-clock time) and animated at a certain number of frames per second
using the 'FramesPerSecond' property.

The time series data is interpreted according to the
'TimeseriesSourceType' property, which can be one
of:

'timeseries' MATLAB time series data with six
values per time:

x y z phi theta psi

The values are resampled.

'Simulink.Timeseries' Simulink.Timeseries (Simulink signal
logging):

• First data item

x y z

• Second data item

phi theta psi

3-332

play (Aero.VirtualRealityAnimation)

'StructureWithTime' Simulink struct with time (for
example, Simulink root outport
logging 'Structure with time'):

• signals(1).values: x y z

• signals(2).values: phi theta
psi

Signals are linearly interpolated vs.
time using interp1.

'Array6DoF' A double-precision array in n rows
and 7 columns for 6-DoF data:
time x y z phi theta psi. If a
double-precision array of 8 or more
columns is in 'TimeseriesSource',
the first 7 columns are used as 6-DoF
data.

'Array3DoF' A double-precision array in n rows
and 4 columns for 3-DoF data: time
x z theta. If a double-precision
array of 5 or more columns is in
'TimeseriesSource', the first 4
columns are used as 3-DoF data.

'Custom' Position and angle data is retrieved
from 'TimeseriesSource'
by the currently registered
'TimeseriesReadFcn'.

The time advancement algorithm used by play is based on animation
frames counted by ticks:

ticks = ticks + 1;
time = tstart + ticks*FramesPerSecond*TimeScaling;

where

3-333

play (Aero.VirtualRealityAnimation)

TimeScaling Specify the seconds of animation data
per second of wall-clock time.

FramesPerSecond Specify the number of frames
per second used to animate the
'TimeseriesSource'.

For default 'TimeseriesReadFcn' methods, the last frame played is
the last time value.

Time is in seconds, position values are in the same units as the geometry
data loaded into the animation object, and all angles are in radians.

Examples Animate virtual reality world, asttkoff.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;

h.play();

See Also initialize

3-334

quat2angle

Purpose Convert quaternion to rotation angles

Syntax [r1 r2 r3] = quat2angle(q)
[r1 r2 r3] = quat2angle(q, s)

Description [r1 r2 r3] = quat2angle(q) calculates the set of rotation angles,
r1, r2, r3, for a given quaternion, q. q is an m-by-4 matrix containing
m quaternions. Each element of q must be a real number. q has its
scalar number as the first column.

Rotation angles are output in radians.

r1
Returns an m array of first rotation angles.

r2
Returns an m array of second rotation angles.

r3
Returns an m array of third rotation angles.

[r1 r2 r3] = quat2angle(q, s) calculates the set of rotation angles,
r1, r2, r3, for a given quaternion, q, and a specified rotation sequence, s.

The default rotation sequence is 'ZYX', where r1 is z-axis rotation, r2
is y-axis rotation, and r3 is x-axis rotation.

Supported rotation sequence strings are 'ZYX', 'ZYZ', 'ZXY', 'ZXZ',
'YXZ', 'YXY', 'YZX', 'YZY', 'XYZ', 'XYX', 'XZY', and 'XZX'.

Examples Determine the rotation angles from q = [1 0 1 0].

[yaw, pitch, roll] = quat2angle([1 0 1 0])
yaw =

0
pitch =

1.5708
roll =

0

3-335

quat2angle

Determine the rotation angles from multiple quaternions.

q = [1 0 1 0; 1 0.5 0.3 0.1];
[pitch, roll, yaw] = quat2angle(q, 'YXZ')

pitch =
1.5708
0.8073

roll =
0

0.7702
yaw =

0
0.5422

Assumptions
and
Limitations

The limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY'
implementations generate an r2 angle that lies between ±90 degrees,
and r1 and r3 angles that lie between ±180 degrees.

The limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX'
implementations generate an r2 angle that lies between 0 and 180
degrees, and r1 and r3 angles that lie between ±180 degrees.

See Also angle2dcm | angle2quat | dcm2angle | dcm2quat | quat2dcm

3-336

quat2dcm

Purpose Convert quaternion to direction cosine matrix

Syntax n = quat2dcm(q)

Description n = quat2dcm(q) calculates the direction cosine matrix, n, for a given
quaternion, q. Input q is an m-by-4 matrix containing m quaternions. n
returns a 3-by-3-by-m matrix of direction cosine matrices. The direction
cosine matrix performs the coordinate transformation of a vector in
inertial axes to a vector in body axes. Each element of q must be a real
number. Additionally, q has its scalar number as the first column.

Examples Determine the direction cosine matrix from q = [1 0 1 0]:

dcm = quat2dcm([1 0 1 0])

dcm =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

Determine the direction cosine matrices from multiple quaternions:

q = [1 0 1 0; 1 0.5 0.3 0.1];
dcm = quat2dcm(q)

dcm(:,:,1) =

0 0 -1.0000
0 1.0000 0

1.0000 0 0

dcm(:,:,2) =

3-337

quat2dcm

0.8519 0.3704 -0.3704
0.0741 0.6148 0.7852
0.5185 -0.6963 0.4963

See Also angle2dcm | dcm2angle | dcm2quat | angle2quat | quat2angle |
quatrotate

3-338

quatconj

Purpose Calculate conjugate of quaternion

Syntax n = quatconj(q)

Description n = quatconj(q) calculates the conjugate, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of conjugates. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the conjugate of q = [1 0 1 0]:

conj = quatconj([1 0 1 0])

conj =

1 0 -1 0

See Also quatdivide | quatinv | quatmod | quatmultiply | quatnorm |
quatnormalize | quatrotate

3-339

quatdivide

Purpose Divide quaternion by another quaternion

Syntax n = quatdivide(q,r)

Description n = quatdivide(q,r) calculates the result of quaternion division, n,
for two given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion quotients. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

Examples Determine the division of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061

Determine the division of a 2-by-4 quaternion by a 1-by-4 quaternion:

q = [1 0 1 0; 2 1 0.1 0.1];
r = [1 0.5 0.5 0.75];
d = quatdivide(q, r)

d =

0.7273 0.1212 0.2424 -0.6061
1.2727 0.0121 -0.7758 -0.4606

See Also quatconj | quatinv | quatmod | quatmultiply | quatnorm |
quatnormalize | quatrotate

3-340

quatinv

Purpose Calculate inverse of quaternion

Syntax n = quatinv(q)

Description n = quatinv(q) calculates the inverse, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns an
m-by-4 matrix of inverses. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the inverse of q = [1 0 1 0]:

qinv = quatinv([1 0 1 0])

qinv =

0.5000 0 -0.5000 0

See Also quatconj | quatdivide | quatmod | quatmultiply | quatnorm |
quatnormalize | quatrotate

3-341

quatmod

Purpose Calculate modulus of quaternion

Syntax n = quatmod(q)

Description n = quatmod(q) calculates the modulus, n, for a given quaternion,
q. Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m moduli. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the modulus of q = [1 0 0 0]:

mod = quatmod([1 0 0 0])

mod =

1

See Also quatconj | quatdivide | quatinv | quatmultiply | quatnorm |
quatnormalize | quatrotate

3-342

quatmultiply

Purpose Calculate product of two quaternions

Syntax n = quatmultiply(q,r)

Description n = quatmultiply(q,r) calculates the quaternion product, n, for two
given quaternions, q and r. Inputs q and r can each be either an
m-by-4 matrix containing m quaternions, or a single 1-by-4 quaternion.
n returns an m-by-4 matrix of quaternion products. Each element of q
and r must be a real number. Additionally, q and r have their scalar
number as the first column.

The quaternions have the form of

q q q q q   0 1 2 3i j k

and

r r r r r   0 1 2 3i j k

The quaternion product has the form of

n q r n n n n     0 1 2 3i j k

where

n r q r q r q r q

n r q r q r q r q

n r q r

0 0 0 1 1 2 2 3 3

1 0 1 1 0 2 3 3 2

2 0 2

   

   

 

()

()

(11 3 2 0 3 1

3 0 3 1 2 2 1 3 0

q r q r q

n r q r q r q r q

 

   

)

()

Note Quaternion multiplication is not commutative.

3-343

quatmultiply

Examples Determine the product of two 1-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500

Determine the product of a 1-by-4 quaternion with itself:

q = [1 0 1 0];
mult = quatmultiply(q)

mult =

0 0 2 0

Determine the product of 1-by-4 and 2-by-4 quaternions:

q = [1 0 1 0];
r = [1 0.5 0.5 0.75; 2 1 0.1 0.1];
mult = quatmultiply(q, r)

mult =

0.5000 1.2500 1.5000 0.2500
1.9000 1.1000 2.1000 -0.9000

See Also quatconj | quatdivide | quatinv | quatmod | quatnorm |
quatnormalize | quatrotate

3-344

quatnorm

Purpose Calculate norm of quaternion

Syntax n = quatnorm(q)

Description n = quatnorm(q) calculates the norm, n, for a given quaternion, q.
Input q is an m-by-4 matrix containing m quaternions. n returns a
column vector of m norms. Each element of q must be a real number.
Additionally, q has its scalar number as the first column.

Examples Determine the norm of q = [1 0 0 0]:

norm = quatnorm([1 0 0 0])

norm =

1

See Also quatconj | quatdivide | quatinv | quatmod | quatmultiply |
quatnormalize | quatrotate

3-345

quatnormalize

Purpose Normalize quaternion

Syntax n = quatnormalize(q)

Description n = quatnormalize(q) calculates the normalized quaternion, n,
for a given quaternion, q. Input q is an m-by-4 matrix containing m
quaternions. n returns an m-by-4 matrix of normalized quaternions.
Each element of q must be a real number. Additionally, q has its scalar
number as the first column.

Examples Normalize q = [1 0 1 0]:

normal = quatnormalize([1 0 1 0])

normal =

0.7071 0 0.7071 0

See Also quatconj | quatdivide | quatinv | quatmod | quatmultiply |
quatnorm | quatrotate

3-346

quatrotate

Purpose Rotate vector by quaternion

Syntax n = quatrotate(q,r)

Description n = quatrotate(q,r) calculates the rotated vector, n, for a quaternion,
q, and a vector, r. q is either an m-by-4 matrix containing m quaternions,
or a single 1-by-4 quaternion. r is either an m-by-3 matrix, or a single
1-by-3 vector. n returns an m-by-3 matrix of rotated vectors. Each
element of q and r must be a real number. Additionally, q has its scalar
number as the first column.

Examples Rotate a 1-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000

Rotate a 1-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
0.8519 1.4741 0.3185

Rotate a 2-by-3 vector by a 1-by-4 quaternion:

q = [1 0 1 0];
r = [1 1 1; 2 3 4];

3-347

quatrotate

n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
-4.0000 3.0000 2.0000

Rotate a 2-by-3 vector by a 2-by-4 quaternion:

q = [1 0 1 0; 1 0.5 0.3 0.1];
r = [1 1 1; 2 3 4];
n = quatrotate(q, r)

n =

-1.0000 1.0000 1.0000
1.3333 5.1333 0.9333

See Also quatconj | quatinv | quatmod | quatmultiply | quatnorm |
quatnormalize

3-348

read (Aero.Geometry)

Purpose Read geometry data using current reader

Syntax read(h, source)

Description read(h, source) reads the geometry data of the geometry object h.
source can be:

• 'Auto'

Selects default reader.

• 'Variable'

Selects MATLAB variable of type structure structures that contains
the fieldsname, faces, vertices, and cdata that define the geometry
in the Handle Graphics patches.

• 'MatFile'

Selects MAT-file reader.

• 'Ac3dFile'

Selects Ac3d file reader.

• 'Custom'

Selects a custom reader.

Examples Read geometry data from Ac3d file, pa24-250_orange.ac.

g = Aero.Geometry;
g.Source = 'Ac3d';
g.read('pa24-250_orange.ac');

3-349

Aero.Animation.removeBody

Purpose Remove one body from animation

Syntax h = removeBody(h,idx)
h = h.removeBody(idx)

Description h = removeBody(h,idx) and h = h.removeBody(idx) remove the
body specified by the index idx from the animation object h.

Input
Arguments

h Animation object.

idx Body specified with this index.

Examples Remove the body identified by the index, 1.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h = removeBody(h,1)

3-350

removeNode (Aero.VirtualRealityAnimation)

Purpose Remove node from virtual reality animation object

Syntax removeNode(h,node)
h.removeNode(node)

Description removeNode(h,node) and h.removeNode(node) remove the node
specified by node from the virtual reality animation object h. node can
be either the node name or the node index. This function can remove
only one node at a time.

Note You can use only this function to remove a node added by
addNode. If you need to remove a node from a previously defined .wrl
file, use a VRML editor.

Examples Remove the node, Lynx1.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addNode('Lynx1',[matlabroot,'/toolbox/aero/astdemos/chaseHelicopter.wrl']);

h.removeNode('Lynx1');

See Also addNode

3-351

removeViewpoint (Aero.VirtualRealityAnimation)

Purpose Remove viewpoint node from virtual reality animation

Syntax removeViewpoint(h,viewpoint)
h.removeViewpoint(viewpoint)

Description removeViewpoint(h,viewpoint) and h.removeViewpoint(viewpoint)
remove the viewpoint specified by viewpoint from the virtual reality
animation object h. viewpoint can be either the viewpoint name or the
viewpoint index. This function can remove only one viewpoint at a time.

Note You can use this function to remove a viewpoint added by
addViewpoint. If you need to remove a viewpoint from a previously
defined .wrl file, use a VRML editor.

Examples Remove the node, Lynx1.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

h.addViewpoint(h.Nodes{2}.VRNode,'children','chaseView','View From Helicopter');

h.removeViewpoint('chaseView');

See Also addViewpoint

3-352

rrdelta

Purpose Compute relative pressure ratio

Syntax d = rrdelta(p0, mach, g)

Description d = rrdelta(p0, mach, g) computes m pressure relative ratios, d,
from m static pressures, p0, m Mach numbers, mach, and m specific heat
ratios, g. p0 must be in pascals.

Examples Determine the relative pressure ratio for three pressures:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, 1.4)

delta =

1.1862 0.2650 0.0507

Determine the relative pressure ratio for three pressures and three
different heat ratios:

delta = rrdelta([101325 22632.0672 4328.1393], 0.5, [1.4 1.35 1.4])

delta =

1.1862 0.2635 0.0507

Determine the relative pressure ratio for three pressures at three
different conditions:

delta = rrdelta([101325 22632.0672 4328.1393], [0.5 1 2], [1.4 1.35 1.4])

delta =

1.1862 0.4161 0.3342

3-353

rrdelta

Assumptions
and
Limitations

For cases in which total pressure ratio is desired (Mach number is
nonzero), the total pressures are calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrsigma | rrtheta

3-354

rrsigma

Purpose Compute relative density ratio

Syntax s = rrsigma(rho, mach, g)

Description s = rrsigma(rho, mach, g) computes m density relative ratios, s,
from m static densities, rho, m Mach numbers, mach, and m specific heat
ratios, g. rho must be in kilograms per meter cubed.

Examples Determine the relative density ratio for three densities:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, 1.4)

sigma =

1.1297 0.3356 0.0879

Determine the relative density ratio for three densities and three
different heat ratios:

sigma = rrsigma([1.225 0.3639 0.0953], 0.5, [1.4 1.35 1.4])

sigma =

1.1297 0.3357 0.0879

Determine the relative density ratio for three densities at three
different conditions:

sigma = rrsigma([1.225 0.3639 0.0953], [0.5 1 2], [1.4 1.35 1.4])

sigma =

1.1297 0.4709 0.3382

3-355

rrsigma

Assumptions
and
Limitations

For cases in which total density ratio is desired (Mach number is
nonzero), the total density is calculated assuming perfect gas (with
constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta | rrtheta

3-356

rrtheta

Purpose Compute relative temperature ratio

Syntax th = rrtheta(t0, mach, g)

Description th = rrtheta(t0, mach, g) computes m temperature relative ratios,
th, from m static temperatures, t0, mMach numbers, mach, and m specific
heat ratios, g. t0 must be in kelvin.

Examples Determine the relative temperature ratio for three temperatures:

th = rrtheta([273.15 310.9278 373.15], 0.5, 1.4)

th =

0.9953 1.1330 1.3597

Determine the relative temperature ratio for three temperatures and
three different heat ratios:

th = rrtheta([273.15 310.9278 373.15], 0.5, [1.4 1.35 1.4])

th =

0.9953 1.1263 1.3597

Determine the relative temperature ratio for three temperatures at
three different conditions:

th = rrtheta([273.15 310.9278 373.15], [0.5 1 2], [1.4 1.35 1.4])

th =

0.9953 1.2679 2.3310

3-357

rrtheta

Assumptions
and
Limitations

For cases in which total temperature ratio is desired (Mach number
is nonzero), the total temperature is calculated assuming perfect gas
(with constant molecular weight, constant pressure specific heat, and
constant specific heat ratio) and dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt &
Whitney, August, 1986

See Also rrdelta | rrsigma

3-358

saveas (Aero.VirtualRealityAnimation)

Purpose Save virtual reality world associated with virtual reality animation
object

Syntax saveas(h, filename)
h.saveas(filename)

Description saveas(h, filename) and h.saveas(filename) save the world
associated with the virtual reality animation object, h, into the .wrl file
name specified in the filename variable. After saving, this function
reinitializes the virtual reality animation object from the saved world.

Examples Save the world associated with h.

h = Aero.VirtualRealityAnimation;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,asttkoff.wrl'];

h.initialize();

h.saveas([tempdir,'my_asttkoff.wrl']);

3-359

SetTimer (Aero.FlightGearAnimation)

Purpose Set name of timer for animation of FlightGear flight simulator

Syntax SetTimer(h)
h.SetTimer
SetTimer(h, MyFGTimer)
h.SetTimer('MyFGTimer')

Description SetTimer(h) and h.SetTimer set the name of the MATLAB timer
for the animation of the FlightGear flight simulator. SetTimer(h,
MyFGTimer) and h.SetTimer('MyFGTimer') set the name of the
MATLAB timer for the animation of the FlightGear flight simulator
and assign a custom name to the timer.

You can use this function to customize your FlightGear animation
object. This customization allows you to simultaneously run multiple
FlightGear objects if you want to use

• Multiple FlightGear sessions

• Different ports to connect to those sessions

Examples Set the MATLAB timer for animation of the FlightGear animation
object, h:

h = Aero.FlightGearAnimation
h.SetTimer

Set the MATLAB timer used for animation of the FlightGear animation
object, h, and assign a custom name, MyFGTimer, to the timer:

h = Aero.FlightGearAnimation
h.SetTimer('MyFGTimer')

See Also ClearTimer

3-360

Aero.Animation.show

Purpose Show animation object figure

Syntax show(h)
h.show

Description show(h) and h.show create the figure graphics object for the animation
object h. Use the Aero.Animation.hide function to close the figure.

Input
Arguments

h Animation object.

Examples Show the animation object, h.

h = Aero.Animation;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
h.show;

3-361

update (Aero.Body)

Purpose Change body position and orientation as function of time

Syntax update(h,t)
h.update(t)

Description update(h,t) and h.update(t) change body position and orientation of
body h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the body geometry and time
series data first.

Examples Update the body b with time in seconds of 5.

b=Aero.Body;
b.load('pa24-250_orange.ac','Ac3d');
tsdata = [...

0, 1,1,1, 0,0,0; ...
10 2,2,2, 1,1,1;];

b.TimeSeriesSource = tsdata;
b.update(5);

See Also load

3-362

update (Aero.Camera)

Purpose Update camera position based on time and position of other Aero.Body
objects

Syntax update(h,newtime,bodies)
h.update(newtime,bodies)

Description update(h,newtime,bodies) and h.update(newtime,bodies) update
the camera object, h, position and aim point data based on the new time,
newtime, and position of other Aero.Body objects, bodies. This function
updates the camera object PrevTime property to newtime.

See Also Aero.Animation.play

3-363

update (Aero.FlightGearAnimation)

Purpose Update position data to FlightGear animation object

Syntax update(h,time)
h.update(time)

Description update(h,time) and h.update(time) update the position data to the
FlightGear animation object via UDP. It sets the new position and
attitude of body h. time is a scalar in seconds.

Note This function requires that you load the time series data and
run FlightGear first.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the body with time time equal to 0.

h = Aero.FlightGearAnimation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
load simdata;
h.TimeSeriesSource = simdata;
t = 0;
h.update(t);

See Also GenerateRunScript | initialize | play

3-364

update (Aero.Node)

Purpose Change node position and orientation versus time data

Syntax update(h,t)
h.update(t)

Description update(h,t) and h.update(t) change node position and orientation of
node h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the node and time series
data first.

Examples Move the Lynx body.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.update(5);

See Also updateNodes

3-365

Aero.Animation.updateBodies

Purpose Update bodies of animation object

Syntax h = updateBodies(time)
h.updateBodies(time)

Description h = updateBodies(time) and h.updateBodies(time) set the new
position and attitude of movable bodies in the animation object h. This
function updates the bodies contained in the animation object h. time
is a scalar in seconds.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the body with time t equal to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateBodies(t);

3-366

Aero.Animation.updateCamera

Purpose Update camera in animation object

Syntax updateCamera(h,time)
h.updateCamera(time)

Description updateCamera(h,time) and h.updateCamera(time) update the camera
in the animation object h. time is a scalar in seconds.

Note The PositionFcn property of a camera object controls the camera
position relative to the bodies in the animation. The default camera
PositionFcn follows the path of a first order chase vehicle. Therefore,
it takes a few steps for the camera to position itself correctly in the
chase plane position.

Input
Arguments

h Animation object.

time Scalar in seconds.

Examples Configure a body with TimeSeriesSource set to simdata, then update
the camera with time t equal to 0.

h = Aero.Animation;
h.FramesPerSecond = 10;
h.TimeScaling = 5;
idx1 = h.createBody('pa24-250_orange.ac','Ac3d');
load simdata;
h.Bodies{1}.TimeSeriesSource = simdata;
t = 0;
h.updateCamera(t);

3-367

updateNodes (Aero.VirtualRealityAnimation)

Purpose Change virtual reality animation node position and orientation as
function of time

Syntax updateNodes(h,t)
h.updateNotes(t)

Description updateNodes(h,t) and h.updateNotes(t) change node position and
orientation of body h as a function of time t. t is a scalar in seconds.

Note This function requires that you load the node and time series
data first.

Examples Update the node h with time in 5 seconds.

h = Aero.VirtualRealityAnimation;

h.FramesPerSecond = 10;

h.TimeScaling = 5;

h.VRWorldFilename = [matlabroot,'/toolbox/aero/astdemos/asttkoff.wrl'];

copyfile(h.VRWorldFilename,[tempdir,'asttkoff.wrl'],'f');

h.VRWorldFilename = [tempdir,'asttkoff.wrl'];

h.initialize();

load takeoffData

h.Nodes{7}.TimeseriesSource = takeoffData;

h.Nodes{7}.TimeseriesSourceType = 'StructureWithTime';

h.Nodes{7}.CoordTransformFcn = @vranimCustomTransform;

h.updateNodes(5);

See Also addNode | update

3-368

Viewpoint (Aero.Viewpoint)

Purpose Create viewpoint object for use in virtual reality animation

Syntax h = Aero.Viewpoint

Description h = Aero.Viewpoint creates a viewpoint object for use with virtual
reality animation.

See Aero.Viewpoint for further details.

3-369

VirtualRealityAnimation (Aero.VirtualRealityAnimation)

Purpose Construct virtual reality animation object

Syntax h = Aero.VirtualRealityAnimation

Description h = Aero.VirtualRealityAnimation constructs a virtual reality
animation object. The animation object is returned to h.

See Aero.VirtualRealityAnimation for further details.

See Also Aero.VirtualRealityAnimation

3-370

wrldmagm

Purpose Use World Magnetic Model

Note The '2000' or '2005' epoch year are outdated. For model years
between 2000 and the start of 2010, use igrf11magm. For model years
between 2010 and the start of 2015, use wrldmagm.

Syntax [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear)
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2010')
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2005')
[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,

'2000')

Description [xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear)
calculates the Earth’s magnetic field at a specific location and time using
the World Magnetic Model (WMM). The default WMM is WMM-2010,
which is valid from January 1, 2010, until December 31, 2014.

Inputs required by wrldmagm are:

height A scalar value, in meters

lat A scalar geodetic latitude, in degrees, where
north latitude is positive, and south latitude
is negative

lon A scalar geodetic longitude, in degrees, where
east longitude is positive, and west longitude
is negative

dyear A scalar decimal year. Decimal year is the
desired year in a decimal format to include any
fraction of the year that has already passed.

Outputs calculated for the Earth’s magnetic field include:

3-371

wrldmagm

xyz Magnetic field vector in nanotesla (nT)

h Horizontal intensity in nanotesla (nT)

dec Declination in degrees

dip Inclination in degrees

f Total intensity in nanotesla (nT)

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2010') is an alternate method for calling WMM-2010, or 2010 epoch.

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2005') is an alternate method for calling WMM-2005, or 2005 epoch.

[xyz, h, dec, dip, f] = wrldmagm(height, lat, lon, dyear,
'2000') is the method for calling WMM-2000, or 2000 epoch.

Examples Calculate the magnetic model 1000 meters over Natick, Massachusetts
on July 4, 2010, using WMM-2010:

[XYZ, H, DEC, DIP, F] = wrldmagm(1000, 42.283, -71.35, decyear(2010,7,4),'2010')

XYZ =

1.0e+004 *

1.9229

-0.5139

4.8865

H =

1.9904e+004

DEC =

-14.9627

3-372

wrldmagm

DIP =

67.8376

F =

5.2763e+004

Assumptions
and
Limitations

The WMM specification produces data that is reliable five years after
the epoch of the model, which begins January 1 of the model year
selected. The WMM specification describes only the long-wavelength
spatial magnetic fluctuations due to the Earth’s core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations
of the geomagnetic field, which occur constantly during magnetic
storms and almost constantly in the disturbance field (auroral zones),
are not included.

References http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

“NOAA Technical Report: The US/UK World Magnetic Model for
2005–2010”

See Also decyear

3-373

http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

Aero.Animation.Bodies property

Purpose Specify name of animation object

Values MATLAB array

Default: []

Description This property specifies the bodies that the animation object contains.

3-374

Aero.Animation.Camera property

Purpose Specify camera that animation object contains

Values handle

Default: []

Description This property specifies the camera that the animation object contains.

3-375

Aero.Animation.Figure property

Purpose Specify name of figure object

Values MATLAB array

Default: []

Description This property specifies the name of the figure object.

3-376

Aero.Animation.FigureCustomizationFcn property

Purpose Specify figure customization function

Values MATLAB array

Default: []

Description This property specifies the figure customization function.

3-377

Aero.Animation.FramesPerSecond property

Purpose Animation rate

Values MATLAB array

Default: 12

Description This property specifies rate in frames per second.

3-378

Aero.Animation.Name property

Purpose Specify name of animation object

Values String

Default: ' '

Description This property specifies the name of the animation object.

3-379

Aero.Animation.TCurrent property

Purpose Current time

Values double

Default: 0

Description This property specifies the current time.

3-380

Aero.Animation.TFinal property

Purpose End time

Values double

Default: NaN

Description This property specifies the end time.

3-381

Aero.Animation.TimeScaling property

Purpose Scaling time

Values double

Default: 1

Description This property specifies the time, in seconds.

3-382

Aero.Animation.TStart property

Purpose Start time

Values double

Default: NaN

Description This property specifies the start time.

3-383

Aero.Animation.VideoCompression property

Purpose Video recording compression file type

Values ‘Archival’

Create Motion JPEG 2000 format file with lossless compression.

‘Motion JPEG AVI’

Create compressed AVI format file using Motion JPEG codec.

‘Motion JPEG 2000’

Create compressed Motion JPEG 2000 format file.

‘MPEG-4’

Create compressed MPEG-4 format file with H.264 encoding
(Windows 7 systems only).

‘Uncompressed AVI’

Create uncompressed AVI format file with RGB24 video.

Data type: Aero.VideoProfileTypeEnum

Default: 'Archival'

Description This property specifies the compression file type to create. For more
information on video compression, see the VideoWriter class.

3-384

Aero.Animation.VideoFileName property

Purpose Video recording file name

Values filename

Data type: string

Default: temp

Description This property specifies the file name for the video recording.

3-385

Aero.Animation.VideoQuality property

Purpose Video recording quality

Values Value between 0 and 100

Data type: double

Default: 75

Description This property specifies the recording quality. For more information on
video quality, see the Quality property of the VideoWriter class.

3-386

Aero.Animation.VideoRecord property

Purpose Video recording

Values ‘on’

Enable video recording.

‘off’

Disable video recording.

‘scheduled’

Schedule video recording. Use this setting with the VideoTStart
and VideoTFinal properties.

Data type: string

Default: 'off'

Description This property enables video recording of animation objects.

Examples Record Animation Object Simulation

Simulate and record flight data.

Create an animation object.

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;

Set the time-scaling (TimeScaling) property on the animation object to
specify the data per second.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling properties
determines the time step of the simulation. These settings result in a
time step of approximately 0.5 s.

3-387

Aero.Animation.VideoRecord property

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

Load simulated flight trajectory data (simdata), located in
matlabroot\toolbox\aero\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

Set up recording properties.

h.VideoRecord = 'on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI'
h.VideoFilename = 'astMotion_JPEG';

Play the animation.

h.play();

Verify that a file named astMotion_JPEG.avi was created in the
current folder.

Disable recording to preserve the file.

h.VideoRecord = 'off';

Record Animation for Four Seconds

Simulate flight data for four seconds.

Create an animation object.

3-388

Aero.Animation.VideoRecord property

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per
second time-scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling
properties determines the time step of the simulation
(TimeScaling/FramesPerSecond). These settings result in a time step
of approximately 0.5 s.

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

Load simulated flight trajectory data (simdata), located in
matlabroot\toolbox\aero\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

Set up recording properties.

h.VideoRecord='on';
h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI';
h.VideoFilename = 'astMotion_JPEG';

3-389

Aero.Animation.VideoRecord property

Play the animation from TFinal to TStart.

h.TSTart = 1;
h.TFinal = 5;
h.play();

Verify that a file named astMotion_JPEG.avi was created in the
current folder. When you rerun the recording, notice that the play time
is shorter than that in the previous example when you record for the
length of the simulation time.

Disable recording to preserve the file.

h.VideoRecord = 'off';

Schedule Three Second Recording of Simulation

Schedule three second recording of animation object simulation.

Create an animation object.

h = Aero.Animation;

Control the frame display rate.

h.FramesPerSecond = 10;

Configure the animation object to set the seconds of animation data per
second time-scaling (TimeScaling) property.

h.TimeScaling = 5;

The combination of FramesPerSecond and TimeScaling
properties determines the time step of the simulation
(TimeScaling/FramesPerSecond). These settings result in a time step
of approximately 0.5 s.

Create and load a body for the animation object.

idx1 = h.createBody('pa24-250_orange.ac','Ac3d');

3-390

Aero.Animation.VideoRecord property

Load simulated flight trajectory data (simdata), located in
matlabroot\toolbox\aero\astdemos.

load simdata;

Set the time series data for the body.

h.Bodies{1}.TimeSeriesSource = simdata;

Create a figure object for the animation object.

h.show();

Set up recording properties.

h.VideoQuality = 50;
h.VideoCompression = 'Motion JPEG AVI';
h.VideoFilename = 'astMotion_JPEG';

Set up simulation time from TFinal to TStart.

h.TSTart = 1;
h.TFinal = 5;

Set up to record between two and four seconds of the four second
simulation.

h.VideoRecord='scheduled';
h.VideoTSTart = 2;
h.VideoTFinal = 4;

Play the animation.

h.play();

Verify that a file named astMotion_JPEG.avi was created in the
current folder. When you rerun the recording, notice that the play time
is shorter than that in the previous example when you record for the
length of the simulation time.

3-391

Aero.Animation.VideoRecord property

Disable recording to preserve the file.

h.VideoRecord = 'off';

3-392

Aero.Animation.VideoTFinal property

Purpose Video recording stop time for scheduled recording

Values Value between TStart and TFinal

Data type: double

Default: NaN, which uses the value of TFinal

Description This property specifies the stop time of scheduled recording.

Use when VideoRecord is set to 'scheduled'. Use VideoTStart to
set the start time of the recording.

3-393

Aero.Animation.VideoTStart property

Purpose Video recording start time for scheduled recording

Values Value between TStart and TFinal

Data type: double

Default: NaN, which uses the value of TStart.

Description This property specifies the start time of the scheduled recording.

Use when VideoRecord is set to 'scheduled'. Use VideoTFinal to
set the end time of the recording.

3-394

A

AC3D Files and Thumbnails

A AC3D Files and Thumbnails

AC3D Files and Thumbnails Overview
Aerospace Toolbox demos use the following AC3D files, located in the
matlabroot\toolbox\aero\astdemos folder. For other AC3D files, see
http://www.flightgear.org/Downloads/ and click the Download Aircraft
link.

Thumbnail AC3D File

ac3d_xyzisrgb.ac

blueoctagon.ac

bluewedge.ac

body_xyzisrgb.ac

delta2.ac

greenarrow.ac

pa24 250_blue.ac

pa24 250_orange.ac

A-2

http://www.flightgear.org/Downloads/

AC3D Files and Thumbnails Overview

Thumbnail AC3D File

redwedge.ac

testrocket.ac

A-3

A AC3D Files and Thumbnails

A-4

Index

IndexA
AC3D files A-2
addBody (Aero.Animation) function 3-2
addNode (Aero.VirtualRealityAnimation)

function 3-3
addRoute (Aero.VirtualRealityAnimation)

function 3-4
addViewpoint

(Aero.VirtualRealityAnimation)
function 3-5

Aero.Animation
example 2-27
flight simulator overview 2-27
introducing 2-26

Aero.Animation object 3-9
Aero.Body object 3-10
Aero.Camera object 3-14
Aero.FlightGearAnimation

example 2-65
introducing 2-26

Aero.FlightGearAnimation object 3-16
Aero.Geometry object 3-22
Aero.Node object 3-24
Aero.Viewpoint function 3-28
Aero.VirtualRealityAnimation

example 2-37
flight simulator overview 2-37
introducing 2-26

Aero.VirtualRealityAnimation object 3-29
Aerospace Toolbox

3-D flight data playback 2-26
AC3D files A-2
animation objects 2-26
coordinate systems 2-2
flight data file access 2-14

aerospace units
definition 2-12

airspeed function 3-41
alphabeta function 3-42
angle2dcm function 3-44

angle2quat function 3-47
animation objects

introducing 2-26
atmoscira function 3-52
atmoscoesa function 3-49
atmosisa function 3-59
atmoslapse function 3-62
atmosnonstd function 3-66
atmosnrlmsise00 function 3-72
atmospalt function 3-84

B
Bodies

properties 3-374
Body (Aero.Body) function 3-86
body coordinates 2-4

C
Camera

properties 3-375
Camera (Aero.Camera) function 3-87
ClearTimer(Aero.FlightGearAnimation)

function 3-88
convacc function 3-89
convang function 3-91
convangacc function 3-93
convangvel function 3-95
convdensity function 3-97
convforce function 3-99
convlength function 3-101
convmass function 3-103
convpres function 3-105
convtemp function 3-107
convvel function 3-109
coordinate systems 2-2

approximations 2-3
body coordinates 2-4
definition 2-2

Index-1

Index

display 2-10
Earth-centered coordinates 2-9
ECEF coordinates 2-10
ECI coordinates 2-9
geocentric and geodetic latitudes 2-7
modeling 2-4
motion with respect to other planets 2-3
navigation 2-7
NED coordinates 2-8
references 2-11
rotational degrees of freedom 2-4 2-6
translational degrees of freedom 2-4 to 2-5
wind coordinates 2-5

correctairspeed function 3-111
createBody (Aero.Animation) function 3-114

D
datcomimport function 3-116
dcm2alphabeta function 3-160
dcm2angle function 3-162
dcm2latlon function 3-165
dcm2quat function 3-167
dcmbody2wind function 3-168
dcmecef2ned function 3-170
decyear function 3-180
delete (Aero.Animation) function 3-183
delete (Aero.FlightGearAnimation)

function 3-184
delete (Aero.VirtualRealityAnimation)

function 3-185
demos

AC3D files A-2
digital DATCOM

examining 2-15
importing 2-14
overview 2-14
plotting aerodynamic coefficients 2-22

digital DATCOM file
example 2-14

importing data 2-15
dpressure function 3-186

E
Earth-centered coordinates 2-9
ECEF coordinates 2-10
ecef2lla function 3-193
ECI coordinates 2-9
examples

astfganim 2-57
astimportddatcom 2-14
astmlanim 2-27
astvranim 2-37
type astdatcom.in 2-14

F
fganimation (Aero.FlightGearAnimation)

function 3-195
Figure

properties 3-376
FigureCustomizationFcn

properties 3-377
findstartstoptimes (Aero.Body)

function 3-196
findstartstoptimes (Aero.Node)

function 3-197
flat2lla function 3-198
FlightGear

flight simulator overview 2-57
installing 2-62
obtaining 2-58

flowfanno function 3-203
flowisentropic function 3-209
flownormalshock function 3-214
flowprandtlmeyer function 3-220
flowrayleigh function 3-224
FramesPerSecond

properties 3-378

Index-2

Index

functions
addBody (Aero.Animation) 3-2
addNode

(Aero.VirtualRealityAnimation) 3-3
AddRoute

(Aero.VirtualRealityAnimation) 3-4
addViewpoint(Aero.VirtualRealityAnimation) 3-5
Aero.Viewpoint 3-28
airspeed 3-41
alphabeta 3-42
angle2dcm 3-44
angle2quat 3-47
atmoscira 3-52
atmoscoesa 3-49
atmosisa 3-59
atmoslapse 3-62
atmosnonstd 3-66
atmosnrlmsise00 3-72
atmospalt 3-84
Body (Aero.Body) 3-86
Camera (Aero.Camera) 3-87
ClearTimer(Aero.FlightGearAnimation) 3-88
convacc 3-89
convang 3-91
convangacc 3-93
convangvel 3-95
convdensity 3-97
convforce 3-99
convlength 3-101
convmass 3-103
convpres 3-105
convtemp 3-107
convvel 3-109
correctairspeed 3-111
createBody (Aero.Animation) 3-114
datcomimport 3-116
dcm2alphabeta 3-160
dcm2angle 3-162
dcm2latlon 3-165
dcm2quat 3-167

dcmbody2wind 3-168
dcmecef2ned 3-170
decyear 3-180
delete (Aero.Animation) 3-183
delete

(Aero.FlightGearAnimation) 3-184
delete

(Aero.VirtualRealityAnimation) 3-185
dpressure 3-186
ecef2lla 3-193
fganimation

(Aero.FlightGearAnimation) 3-195
findstartstoptimes (Aero.Body) 3-196
findstartstoptimes (Aero.Node) 3-197
flat2lla 3-198
flowfanno 3-203
flowisentropic 3-209
flownormalshock 3-214
flowprandtlmeyer 3-220
flowrayleigh 3-224
generatePatches (Aero.Body) 3-234
GenerateRunScript

(Aero.FlightGearAnimation) 3-235
geoc2geod 3-238
geocradius 3-241
geod2geoc 3-243
geoidegm96 3-245
geoidheight 3-248
gravitycentrifugal 3-254
gravitysphericalharmonic 3-257
gravitywgs84 3-265
gravityzonal 3-273
hide (Aero.Animation) 3-280
igrf11magm 3-281
initialize (Aero.Animation) 3-285
initialize

(Aero.FlightGearAnimation) 3-286
initialize

(Aero.VirtualRealityAnimation) 3-287
initIfNeeded (Aero.Animation) 3-288

Index-3

Index

juliandate 3-289
leapyear 3-292
lla2ecef 3-293
lla2flat 3-295
load (Aero.Body) 3-300
machnumber 3-302
mjuliandate 3-304
move (Aero.Body) 3-312
move (Aero.Node) 3-313
moveBody (Aero.Animation) 3-315
Node (Aero.Node) 3-316
nodeInfo

(Aero.VirtualRealityAnimation) 3-317
play (Aero.Animation) 3-324
play (Aero.FlightGearAnimation) 3-328
play

(Aero.VirtualRealityAnimation) 3-332
quat2angle 3-335
quat2dcm 3-337
quatconj 3-339
quatdivide 3-340
quatinv 3-341
quatmod 3-342
quatmultiply 3-343
quatnorm 3-345
quatnormalize 3-346
quatrotate 3-347
read (Aero.Geometry) 3-349
removeBody (Aero.Animation) 3-350
removeNode

(Aero.VirtualRealityAnimation) 3-351
removeViewpoint

(Aero.VirtualRealityAnimation) 3-352
rrdelta 3-353
rrsigma 3-355
rrtheta 3-357
saveas

(Aero.VirtualRealityAnimation) 3-359
SetTimer(Aero.FlightGearAnimation) 3-360
show (Aero.Animation) 3-361

update (Aero.Body) 3-362
update (Aero.Camera) 3-363
update

(Aero.FlightGearAnimation) 3-364
update (Aero.Node) 3-365
updateBodies (Aero.Animation) 3-366
updateCamera (Aero.Animation) 3-367
updateNodes

(Aero.VirtualRealityAnimation) 3-368
Viewpoint (Aero.Viewpoint) 3-369
VirtualRealityAnimation

(Aero.VirtualRealityAnimation) 3-370
wrldmagm 3-371

G
generatePatches (Aero.Body) function 3-234
GenerateRunScript

(Aero.FlightGearAnimation)
function 3-235

geoc2geod function 3-238
geocentric and geodetic latitudes 2-7
geocradius function 3-241
geod2geoc function 3-243
geoidegm96 function 3-245
geoidheight function 3-248
Geometry (Aero.Geometry) object 3-253
gravitycentrifugal function 3-254
gravitysphericalharmonic function 3-257
gravitywgs84 function 3-265
gravityzonal function 3-273

H
hide (Aero.Animation) function 3-280

I
igrf11magm function 3-281
importing

digital DATCOM data 2-14

Index-4

Index

initialize (Aero.Animation) function 3-285
initialize (Aero.FlightGearAnimation)

function 3-286
initialize (Aero.VirtualRealityAnimation)

function 3-287
initIfNeeded (Aero.Animation)

function 3-288

J
juliandate function 3-289

L
leapyear function 3-292
lla2ecef function 3-293
lla2flat function 3-295
load (Aero.Body) function 3-300

M
machnumber function 3-302
mjuliandate function 3-304
modeling 2-4
move (Aero.Body) function 3-312
move (Aero.Node) function 3-313
moveBody (Aero.Animation) function 3-315

N
Name

properties 3-379
navigation 2-7
NED coordinates 2-8
Node (Aero.Node) function 3-316
nodeInfo (Aero.VirtualRealityAnimation)

function 3-317

O
objects

Aero.Animation 3-9
Aero.Body 3-10
Aero.Camera 3-14
Aero.FlightGearAnimation 3-16
Aero.Geometry 3-22
Aero.Node 3-24
Aero.VirtualRealityAnimation 3-29
Geometry (Aero.Geometry) 3-253

P
play (Aero.Animation) function 3-324
play (Aero.FlightGearAnimation)

function 3-328
play (Aero.VirtualRealityAnimation)

function 3-332
properties

Bodies 3-374
Camera 3-375
Figure 3-376
FigureCustomizationFcn 3-377
FramesPerSecond 3-378
Name 3-379
TCurrent 3-380
TFinal 3-381
TimeScaling 3-382
TStart 3-383
VideoCompression 3-384
VideoFileName 3-385
VideoQuality 3-386
VideoRecord 3-387
VideoTFinal 3-393
VideoTStart 3-394

Q
quat2angle function 3-335
quat2dcm function 3-337
quatconj function 3-339
quatdivide function 3-340

Index-5

Index

quatinv function 3-341
quatmod function 3-342
quatmultiply function 3-343
quatnorm function 3-345
quatnormalize function 3-346
quatrotate function 3-347

R
read (Aero.Geometry) function 3-349
removeBody (Aero.Animation) function 3-350
removeNode (Aero.VirtualRealityAnimation)

function 3-351
removeViewpoint

(Aero.VirtualRealityAnimation)
function 3-352

rotational degrees of freedom 2-4 2-6
rrdelta function 3-353
rrsigma function 3-355
rrtheta function 3-357

S
saveas (Aero.VirtualRealityAnimation)

function 3-359
SetTimer(Aero.FlightGearAnimation)

function 3-360
show (Aero.Animation) function 3-361

T
TCurrent

properties 3-380
TFinal

properties 3-381
TimeScaling

properties 3-382
translational degrees of freedom 2-4 to 2-5
TStart

properties 3-383

U
update (Aero.Body) function 3-362
update (Aero.Camera) function 3-363
update (Aero.FlightGearAnimation)

function 3-364
update (Aero.Node) function 3-365
updateBodies (Aero.Animation)

function 3-366
updateCamera (Aero.Animation)

function 3-367
updateNodes

(Aero.VirtualRealityAnimation)
function 3-368

V
VideoCompression

properties 3-384
VideoFileName

properties 3-385
VideoQuality

properties 3-386
VideoRecord

properties 3-387
VideoTFinal

properties 3-393
VideoTStart

properties 3-394
Viewpoint (Aero.Viewpoint) function 3-369
VirtualRealityAnimation

(Aero.VirtualRealityAnimation)
function 3-370

W
wind coordinates 2-5
wrldmagm function 3-371

Index-6

	toc
	Getting Started
	Aerospace Toolbox Product Description
	Key Features

	Aerospace Toolbox and Aerospace Blockset

	Using Aerospace Toolbox
	Defining Coordinate Systems
	Fundamental Coordinate System Concepts
	Definitions
	Approximations
	Motion with Respect to Other Planets

	Coordinate Systems for Modeling
	Body Coordinates
	Wind Coordinates

	Coordinate Systems for Navigation
	Geocentric and Geodetic Latitudes
	NED Coordinates
	ECI Coordinates
	ECEF Coordinates

	Coordinate Systems for Display
	References

	Aerospace Units
	Digital DATCOM Data
	Digital DATCOM Data Overview
	USAF Digital DATCOM File
	Data from DATCOM Files
	Imported DATCOM Data
	Missing DATCOM Data
	Aerodynamic Coefficients
	Plotting Lift Curve Moments
	Plotting Drag Polar Moments
	Plotting Pitching Moments

	3-D Flight Data Playback
	Aerospace Toolbox Animation Objects

	Aero.Animation Objects
	Running the Example
	Simulated and Actual Flight Data
	Creating and Configuring an Animation Object
	Loading Recorded Data for Flight Trajectories
	Displaying Body Geometries in a Figure Window
	Recording Animation Files
	Playing Back Flight Trajectories Using the Animation Object
	Viewing Recorded Animation Files
	Manipulating the Camera
	Moving and Repositioning Bodies
	Creating a Transparency in the First Body
	Changing the Color of the Second Body
	Turning Off the Landing Gear of the Second Body

	Aero.VirtualRealityAnimation Objects
	Running the Example
	Visualize Aircraft Takeoff via Virtual Reality Animation Object
	Create the Animation Object
	Set the Animation Object Properties
	Change Directory
	Initialize the Virtual Reality Animation Object
	Set Additional Node Information
	Set Coordinate Transform Function
	Add a Chase Helicopter
	Create New Viewpoint
	Play Animation
	Play Animation From Helicopter
	Add ROUTE
	Add Another Body
	Remove Body
	Revert To Original World
	Close and Delete World

	Aero.FlightGearAnimation Objects
	About the FlightGear Interface
	Supported FlightGear Versions
	Obtaining FlightGear Software

	Configuring Your Computer for FlightGear
	Graphics Recommendations for Microsoft Windows
	Setting Up OpenGL Graphics on Windows
	Setup on Linux, Mac OS X, and Other Platforms

	Install and Start FlightGear
	Flight Simulator Interface Example
	Import the Aircraft Geometry into FlightGear

	Running the Example
	Flight Trajectory Data
	Loading Recorded Flight Trajectory Data
	Creating a Time Series Object from Trajectory Data
	Creating a FlightGearAnimation Object
	Modifying the FlightGearAnimation Object Properties
	Generating the Run Script
	Installing Additional FlightGear Scenery
	Starting the FlightGear Flight Simulator
	Playing Back the Flight Trajectory

	Alphabetical List
	AC3D Files and Thumbnails
	AC3D Files and Thumbnails Overview

	Index

	tables
	Common Fields for the 1976 Version (File Type 6)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 1976 Version (File Type 6)
	High-Lift and Control Fields for Symmetric Flaps for the 1976 Ve
	High-Lift and Control Fields Available for Asymmetric Flaps for
	High-Lift and Control Fields Available for Control/Trim Tabs for
	High-Lift and Control Fields Available for Trim for the 1976 Ver
	Transverse Jet Control Fields for the 1976 Version (File Type 6)
	Hypersonic Fields for the 1976 Version (File Type 6)
	Auxiliary and Partial Fields Available for the 1976 Version (Fil
	Common Fields for the 1999 Version (File Type 6)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 1999 Version (File Type 6)
	Common Fields for the 2007, 2008, and 2011 Versions (File Type 6
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions
	Common Fields for the 2007, 2008, and 2011 Versions (File Type 2
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2007, 2008, and 2011 Versions
	Fields for the 2008 and 2011 Version (File Type 42)
	Static Longitude and Lateral Stability Fields Available for the
	Dynamic Derivative Fields for the 2008 and 2011 Version (File Ty

